
Michael Hennerich
Mihai Bancisor

Just enough Software and HDL for
High Speed designs

2

Typical Customer Design Flow

Research

• Behavioral
Simulation

• Device Evaluation
•Meassure: SFDR,

SNR, EVM, NF,
NSD, etc.

Algorithm
Development

• MATLAB/Python/G
RC reference
implementation

• Hardware
streaming

Design Elaboration

• Modeling
•MATLAB/Python/G

RC
• Hardware

streaming
• Data type

conversion

Prototype

• Deployment to
development board

• Design optimization
• HDL Integration
• Driver Integration

Production

• Deployment to
custom hardware

• Validation with
complete hardware
solution

PlutoSDR/JupiterSDR

Evaluation board FMC + FPGA Carrier of choice

Full Custom design using same HDL/SW/Infrastructure

FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved.

Software in the Design-in Journey

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 3FTC | Orlando, FL | December 11-15, 2023

Evaluation & Research
Evaluation Board,
Software Model*

Data Capture,
Analysis, Algorithm

Development
3rd Party Tool Support

Prototyping
Firmware Applications

& Linux Support

Development & Production
No-OS & Linux drivers & HDL

f(x)

“I need to configure, capture and analyze data
as quickly and simply as possible.”

- Analog Engineer

“I want to model and process data using
familiar tools.”
- Modelling/Domain Expert

“I need to implement the software and/or
digital interface with my host MCU/FPGA”

- Embedded Software & Digital HDL Engineers

“I want to target more representative hardware
and software configurations.”

- Embedded Software Engineer

Increasing Technical Expertise & Time
* Software Model is optional

Evaluation, Test and Analysis

4

Embedded MPSOC

ARM CORTEX A53 Processing System

Windows / Linux / Mac HostAnalog Devices
Transceiver or

ADC/DAC

libIIO
remote

MATLAB/Simulink Model

IIO
System Object

Linux

libIIO
local

iiod
TCP/IP
ServerKernel Drivers

Programmable Logic

Transciever
HDL Interface

TCP/IPSYSFS

Analog Devices
Microwave

Data

SPI/GPIO

Analog IF
Digitizer

RF /
Microwave

SPI/GPIO CONTROL

Embedded MPSOC

ARM CORTEX A53 Processing System

Windows / Linux / Mac HostAnalog Devices
Transceiver or

ADC/DAC

libIIO
remote

Python Script

IIO
System Object

Linux

libIIO
local

iiod
TCP/IP
ServerKernel Drivers

Programmable Logic

Transciever
HDL Interface

TCP/IPSYSFS

Analog Devices
Microwave

Data

SPI/GPIO

Analog IF
Digitizer

RF /
Microwave

SPI/GPIO CONTROL

Embedded MPSOC

ARM CORTEX A53 Processing System

Windows / Linux / Mac HostAnalog Devices
Transceiver or

ADC/DAC

libIIO
remote

Python Script

IIO
System Object

Linux

libIIO
local

iiod
TCP/IP
ServerKernel Drivers

Programmable Logic

Transciever
HDL Interface

TCP/IPSYSFS

Analog Devices
Microwave

Data

SPI/GPIO

Analog IF
Digitizer

RF /
Microwave

SPI/GPIO CONTROL

IIO Oscilloscope

Single cohesive

software solution -

meeting customers

in their ecosystem

or at their tools of

choice

FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved.

❑ Product Evaluation
❑ Using Hardware & Software

Components to confirm that
the Converter meets the
Application needs

❑ Time is (very roughly)
proportional to complexity and
how application specific it
needs to be

Algorithmic Development, Modeling, Prototyping

Embedded MPSOC

ARM CORTEX A53 Processing System

Windows / Linux / Mac HostAnalog Devices
Transceiver or

ADC/DAC

libIIO
remote

MATLAB/Simulink Model

IIO
System Object

Linux

libIIO
local

iiod
TCP/IP
ServerKernel Drivers

Programmable Logic

Transciever
HDL Interface

TCP/IPSYSFS

Analog Devices
Microwave

Data

SPI/GPIO

Analog IF
Digitizer

RF /
Microwave

SPI/GPIO CONTROL

Embedded MPSOC

ARM CORTEX A53 Processing System

Windows / Linux / Mac HostAnalog Devices
Transceiver or

ADC/DAC

libIIO
remote

Python Script

IIO
System Object

Linux

libIIO
local

iiod
TCP/IP
ServerKernel Drivers

Programmable Logic

Transciever
HDL Interface

TCP/IPSYSFS

Analog Devices
Microwave

Data

SPI/GPIO

Analog IF
Digitizer

RF /
Microwave

SPI/GPIO CONTROL

Embedded MPSOC

ARM CORTEX A53 Processing System

Windows / Linux / Mac HostAnalog Devices
Transceiver or

ADC/DAC

libIIO
remote

Python Script

IIO
System Object

Linux

libIIO
local

iiod
TCP/IP
ServerKernel Drivers

Programmable Logic

Transciever
HDL Interface

TCP/IPSYSFS

Analog Devices
Microwave

Data

SPI/GPIO

Analog IF
Digitizer

RF /
Microwave

SPI/GPIO CONTROL

GRC Flowgraph

gr-iio

Single cohesive

software solution -

meeting customers

in their ecosystem

or at their tools of

choice

FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 5

❑ Product Prototyping
❑ Plug ‘n’ Play hardware and

software, see the key
features/performance of the
part

❑ Configure, Capture signals or
Generate waveforms in 10-15
minutes

Open Market Development
platforms

(Off the shelf carrier boards)

ADI Evaluation boards

(Daughter Boards)

FMC Compatible Dev platforms
Variety of FMC Compatible Boards

 MxFE, Navassa, Talise, Catalina, Madura

Evaluation/Prototyping

H
ar

dw
ar

e
D

ev
el

op
m

en
t

SW
, I

nf
ra

st
ru

ct
ur

e
&

 T
oo

ls

Open Source & Bare Metal
Device level Drivers

HDL/FPGA
Reference Designs

Matlab
Toolbox Support

ADI LibIIO

Options for different RF Applications

ADI IIO-Scope

LVDS/CMOS JESD204B JESD204B/C
61.44MSPS 491MSPS 12GSPS/4GSPS
 2 Channel 2 Channel 4 Channel

 Channel Sampling Speed

C
ha

nn
el

 B
an

dw
id

th

 4

0M
H

z
 7

0M
H

z

 2

00
M

H
z

 2

G
H

z

Building Blocks for development and new revenue streams

FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 6

Common Architecture Makes It Easy to Transition Between Platforms

► Shares same software/HDL/hardware stack
▪ Makes it easy to move from one to the other
▪ Differentiated on form factor, number of channels,

connectivity, expandability, FPGA resources, CPU
resources

► Start with ADALM-PLUTO
▪ Stream to MATLAB®, Simulink®, or GNU Radio via USB
▪ Take data in the field
▪ Validate your communication, radar, or SIGINT algorithms

in MATLAB, Simulink, or GNU Radio
▪ Start moving to embedded signal processing
▪ Transition to production-ready SOM
▪ Use custom chip-down design

► Same tools, same libraries, same HDL
▪ Vivado, MATLAB, IIO work the same on all platforms
▪ Common HDL at github.com/analogdevicesinc/hdl
▪ Common Linux® kernel at

github.com/analogdevicesinc/linux

ADALM-PLUTO
• AD9363
• Zynq®-7010

Jupiter
• ADRV9002
• ZynqMP-ZU3EG

MxFE
• AD9082/AD9081
• ZCU102, ZC706, VCK190,

VCU118, VCU128, etc.

QUAD-MxFE Platform
• 4x AD9082/81
• MCS
• VCU118

ADRV9009-ZU11EG
• 2× ADRV9009
• ZynqMP-ZU11EG

FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 7

http://github.com/analogdevicesinc/hdl
http://github.com/analogdevicesinc/linux

Analysis | Control | Evaluation
❖ (ACE) Software
❖ IIO Oscilloscope
❖ Scopy
❖ qIQ Receiver
Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 8FTC | Orlando, FL | December 11-15, 2023

“I need to configure, capture and analyze data
as quickly and simply as possible.”

- Analog Engineer

ACE ADGenericIIO Board Plugin

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 9 FTC | Orlando, FL | December 11-15, 2023

►Capture and display data
▪ Time domain (with trigger support)

▪ Frequency domain

▪ Constellation plot

▪ Markers

▪ Math operations

►Device configuration

►Plug-in system allow to create device
or complex specialized GUI

►Should support any IIO device

►Cross platform

10

IIO-Scope

FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved.

►DMM Plugin
▪ The Digital Multimeter continuously displays

device specific data once the start button is
activated

Generic plugins

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 11FTC | Orlando, FL | December 11-15, 2023

►Debug Tab/Plugin
▪ Tool for device debugging and control

▪ Read Write device/channel attributes and low-
level registers

12

Specific control plugins

FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved.

►FPGA Settings
▪ The plugin provides several options on how the

transmitted data is generated
▪ Two tone Direct Digital Synthesizer (DDS) to

transmit a bi-tonal signal on channels I and Q of
the DAC. Or it is possible to use the Direct
Memory Access (DMA) facility to transmit
custom data that you have stored in a file.

►High Level Device Control

► iio_info : Information about all IIO devices, backends and context attributes
▪ iio_info -s

▪ iio_info –u ip:192.168.2.1

► iio_attr : Read and write IIO attributes
▪ iio_attr -c ad9361-phy altvoltage0 frequency 2450000000

► iio_readdev : Read samples from an IIO device
▪ iio_readdev -u usb:1.100.5 -b 100000 cf-ad9361-lpc | pv > /dev/null

► iio_writedev : Write samples to an IIO device
▪ iio_readdev -b 100000 cf-ad9361-lpc | iio_writedev -b 100000 cf-ad9361-dds-core-lpc

► iio_reg : Read or write SPI, I2C and MMIO registers in an IIO device (useful to debug drivers)
▪ iio_reg adrv9009-phy 0

13

IIO – libiio – Command line tools

©2019 Analog Devices, Inc. All rights reserved.

FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved.

http://upload.wikimedia.org/wikipedia/commons/2/2e/Tux_bg.png

What‘s next?

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 14FTC | Orlando, FL | December 11-15, 2023

►Scopy as generic IIO instrument
▪ Will replace OSC in future

►qIQ Receiver
▪ 3rd party tool

▪ Windows application which
provides receive capability
for evaluating signal quality
for transceiver and direct
sampling chips from ADI

▪ qIQ Receiver is perfect for:
▪ Evaluating the chip’s

performance using an
external signal source

▪ Supports basically any TRX,
MxFE, ADC with IIO driver
support

qIQ Receiver

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 15FTC | Orlando, FL | December 11-15, 2023

MATLAB Simulink

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 16FTC | Orlando, FL | December 11-15, 2023

“I want to model and process data using
familiar tools.”
- Modelling/Domain Expert

MATLAB Simulink Integration
► Industry standard tools for streamlined workflow and

development / integration process
▪ From concept to production

► Single environment for
▪ Hardware evaluation
▪ System simulation
▪ Algorithm development and validation
▪ Requirements verification
▪ Data streaming
▪ HDL & SW Code generation

► Model-Based Design
▪ Modeling and simulation of the RF signal chain
▪ Development, modeling, and simulation of communications algorithms

▪ MATLAB and Simulink
▪ GnuRadio

▪ Testing and verification of algorithms with real-world data
▪ Streaming from RF hardware (hardware in the loop)

▪ Deployment of communications system to hardware for prototyping
and production
▪ Code generation and targeting

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 17 FTC | Orlando, FL | December 11-15, 2023

MATLAB Simulink

►All components rely on libiio or
tinyiiod

►MATLAB data streaming and
HDL/C/C++ targeting
▪ Transceiver Toolbox

▪ High Speed Converter Toolbox

▪ Sensor Toolbox

▪ Time of Flight Toolbox

MATLAB: Advanced Application Level Support

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. FTC | Orlando, FL | December 11-15, 2023 18

19

IIO Driver

ADALM-PLUTO,
ADRV9361-Z7035 RF SOM, ADRV9364-Z7020 RF SOM, ADRV9009-ZU11EG RF SOM, ...

FMCOMMS2, FMCOMMS3,
FMCOMMS4, FMCOMMS5,

ADRV9009 AD9144
AD9680 AD9172 AD9213

AD9081 AD9152 …

Xilinx Zed Board, Xilinx ZC702, Xilinx ZC706,
Xilinx KC705, Xilinx KCU105,

Xilinx ZCU102, Xilinx VCU118, Xilinx VCU128 Xilinx VMK180, Xilinx VCK190
Intel Arria 10 SoC, Intel Stratix 10 SoC

FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved.

ADALM-PLUTO
Aka PlutoSDR

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 20FTC | Orlando, FL | December 11-15, 2023

ADALM-PLUTO (PlutoSDR)
Platform to get familiar with ADI’s SDR infrastructure, focus on streaming

► Processor
▪ Dual core Arm® Cortex®-A9 (667 MHz each)
▪ L1 cache: 32 kB instruction, 32 kB data
▪ L2 cache: 512 kB

► FPGA
▪ Artix®-7 fabric
▪ 28k logic cells
▪ 2.1 Mb block RAM
▪ 80 DSP slices

► 512 MB DDR3L
► 32 MB SPI Flash

► Radio
▪ Up to 20 MHz RF bandwidth
▪ 128-tap FIR filters for equalization
▪ 325 MHz to 3800 MHz tuning range
▪ 1 Rx, 1 Tx, half or full duplex

► 40 MHz TCVCXO ref clock with ±1 ppm stability
► USB 2.0 (OTG controller + PHY)
► Full Linux®-based reference design
► Fully integrated and tested system
► Weight: 114 g
► Size: 117 mm × 79 mm × 24 mm
► Component temperature rating: 10°C to 40°C
► Typical power consumption under 2 W
► SMA connectors: 2

Xilinx® XCZ7010

ADI AD9363

FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 21

Rx 1

Tx 1

Rx 2

Tx 2

JTAG and UART
CONN

USB Power
Only

USB Power +
DATA

Ext. CLK in
Ext. CLK out

buffered ADM7160-1.8
(Ultralow Noise LDO)ADP1754-1.3

(LDO)
LTC6957-3
(Dual Buffer)

ADP2164
(High Efficiency

Buck)

LTC4415
(Dual Ideal Diodes,
ADJ current limit) AD9363

(RF Agile Transceiver)
ADP2114

(Configurable
Dual Buck)

Zynq
(FPGA + ARM CPU)

RAM
(512 Mbyte)

FLASH
(32 Mbyte)

USB PHY

ADM7160-3.3
(Ultralow Noise LDO)

USB to UART BridgeADP1754 –
LDO

TOP SIDE

BOT SIDE

Software, Programmable Logic & Hardware

IIO Subsystem

AD9361-PHY
IIO Driver

(ad9361-phy)

AXI-ADC
RX

Transport Layer
IIO Driver

(cf-ad9361-lpc)

AXI-DAC-DDS
TX

Transport Layer
IIO Driver

(cf-ad9361-dds-core-lpc)

AD9363 TRX

AXI-AD9361 HDL Core SPI GPIO

CMOS

DMA
Subsystem

CLK
Subsystem

SPI
Subsystem

GPIO
Subsystem

DMA DMA

Hardware

FPGA

Software

Kernel

PS7
SPI

PS7
GPIO

FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 22

Hands on section

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 23FTC | Orlando, FL | December 11-15, 2023

Workshop Contents

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 24FTC | Orlando, FL | December 11-15, 2023

1. What is SDR?
2. IIO Osciloscope
3. Transmit and Receive a Complex Sinusoid in Python
 Setup
 Theory
 Implementation and Results
4. Doppler Radar in GNU Radio
 Setup
 Theory
 Implementation and Results
5. Binary Shift Keying in Python
 Setup
 Theory
 Implementation and Results
6. Quadrature Shift Keying in GNU Radio
 Setup
 Theory
 Implementation and Results
7. Receiving QPSK modulated Video with SDRs

1. What is SDR (Software Defined Radio)?

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 25FTC | Orlando, FL | December 11-15, 2023

Reconfigurable, multipurpose radio:

Reconfigurable

Software

Optimized only for a few applications (Super Heterodyne):
(Not SDR)

Zero-IF

1. What is SDR (Software Defined Radio)?

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 26FTC | Orlando, FL | December 11-15, 2023

RF
Design

SoC
Assembly

Digital
Hardware

DSP
Algorithms

Software
Engineering

► Designs are complex
▪ Multiple skillsets
▪ Multiple technologies

► Radio Developer needs
▪ Fast prototyping

▪ Complete reference designs
▪ antenna to MATLAB

▪ Streaming

▪ Targeting

▪ Easy to use prototyping platforms
▪ Complete workflows – easy to use toolchains

▪ Path to production
▪ Reduced system complexity

▪ Hardware
▪ Software
▪ Mechanics

▪ Reduced risk

► Ease of use sometimes beats performance
▪ Many decisions are made by the system engineer in the

prototyping stage

©2019 Analog Devices, Inc. All rights reserved.

SDR

Communications theory

RF Hardware skills

Hardware

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 27FTC | Orlando, FL | December 11-15, 2023

ADALM Pluto Jupiter Talise SOM

Main Specs:
- 2x Tx and 2x Rx ports 50 Ohm matched
- LO Freq. Range: 70MHz -> 6GHz
- BW : 56MHz
- Sample rate: 61.44MSPS; 14 bits
- Interfaces: USB2, UART

Main Specs:
- 2x Tx and 2x Rx ports 50 Ohm matched
- LO Freq. Range: 30MHz -> 6GHz
- BW : 40MHz
- Sample rate: 61.44MSPS; 16 bits
- Interfaces: USB3, 1Gb Ethernet, Display
Port, UART

Main Specs:
- 4x Tx and 4x Rx (expandable to 8 TRx)
- LO Freq. Range: 75MHz -> 6GHz
- RX BW: 200MHz, TX BW: 450MHz
- Interfaces: USB3, 1Gb Ethernet, Display
Port, PCIe 3.0 ,SFP, QSFP, UART

►Capture and display data
▪ Time domain (with trigger support)

▪ Frequency domain

▪ Constellation plot

▪ Markers

▪ Math operations

28

2. IIO-Scope

FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved.

3.Transmit and receive a complex sinusoid with Python

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 29FTC | Orlando, FL | December 11-15, 2023

ⅇ𝑗2𝜋𝑓𝑡 = 𝑐𝑜𝑠 2𝜋𝑓𝑡 + 𝑗 𝑠𝑖𝑛 2𝜋𝑓𝑡

Real
Sinusoid

Complex
Sinusoid

ⅇ𝑗2𝜋𝑓𝑡 + ⅇ−𝑗2𝜋𝑓𝑡 = 2𝑐𝑜𝑠 2𝜋𝑓𝑡 ► Real sinusoid:

► Complex sinusoid: Amplitude

Re

Im

Time

Im

Re

Time plot

Constellation Plot

0

1

-1

Re = 1

Im = 0
Re = 0

Im = 1

► Complex sinusoid (Constellation Plot):

I (In phase) Q (Quadrature phase)

What is a complex sinusoid?

3.Transmit and receive a complex sinusoid with Python

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 30FTC | Orlando, FL | December 11-15, 2023

What is a PyADI-IIO?

► PyADI-IIO is a python abstraction module for ADI hardware with IIO drivers to make them easier to

use. The libIIO interface although extremely flexible can be cumbersome to use due to the amount

of boilerplate code required for even simple examples, especially when interfacing with buffers.

This module has custom interfaces classes for specific parts and development systems which can

generally, make them easier to understand and use. To get up and running with a device can be as

simple as a few lines of code.

3.Transmit and receive a complex sinusoid with Python

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 31FTC | Orlando, FL | December 11-15, 2023

► Connect Rx and Tx using the SMA cable from the kit (as in the picture from below) and connect the Pluto to the PC

using the USB Cable provided.

► Go to ~/Desktop/ftc23_sdr/python/python_loopback_sine_pluto.py and open with Thonny Python IDE.

3.Transmit and receive a complex sinusoid with Python

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 32FTC | Orlando, FL | December 11-15, 2023

► Open ~/Desktop/ftc23_sdr/python/sinewave_loopback/python_loopback_sine_pluto.py:

► What does this code do?

► What happens in the hardware?

Configure
SDR

Create a
discrete
complex
sinusoid

Call tx() to transmit
the created

sinusoid as I and Q
data

Call rx() to
receive the I
and Q data

Plot the
received
sinusoid

cos(915MHz*t)

-sin(915MHz*t)

tx_hardwaregain rx_hardwaregain

LPF

LPF Q

Transmitter

I

cos(915MHz*t)

-sin(915MHz*t)
Frequency

Amplitude

20KHz

Receiver

Frequency

Amplitude

915MHz + 20KHz

Q

I

Frequency

Amplitude

20KHz

3.Transmit and receive a complex sinusoid with Python

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 33FTC | Orlando, FL | December 11-15, 2023

► Code snippets:

Configure
SDR

Create a
discrete
complex
sinusoid

Call tx() to transmit
the created

sinusoid as I and Q
data

Call rx() to
receive the I
and Q data

Plot the
received
sinusoid

3.Transmit and receive a complex sinusoid with Python

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 34FTC | Orlando, FL | December 11-15, 2023

► Code snippets:

Configure
SDR

Create a
discrete
complex
sinusoid

Call tx() to transmit
the created

sinusoid as I and Q
data

Call rx() to
receive the I
and Q data

Plot the
received
sinusoid

Constellation of a
sinewave

Fig. 1 Fig. 2

Fig. 3

3.Transmit and receive a complex sinusoid with Python

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 35FTC | Orlando, FL | December 11-15, 2023

► Code snippets:

Configure
SDR

Create a
discrete
complex
sinusoid

Call tx() to transmit
the created

sinusoid as I and Q
data

Call rx() to
receive the I
and Q data

Plot the
received
sinusoid

3.Transmit and receive a complex sinusoid with Python

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 36FTC | Orlando, FL | December 11-15, 2023

► Code snippets:

Configure
SDR

Create a
discrete
complex
sinusoid

Call tx() to transmit
the created

sinusoid as I and Q
data

Call rx() to
receive the I
and Q data

Plot the
received
sinusoid

Fig. 4 Fig. 5 Fig. 6

3.Transmit and receive a complex sinusoid with Python

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 37FTC | Orlando, FL | December 11-15, 2023

► Using PyADI-IIO you can reuse the code and run it on more expensive SDRs like Jupiter and Talise.

ADALM-PLUTO
• AD9363
• Zynq®-7010

Jupiter
• ADRV9002
• ZynqMP-ZU3EG

ADRV9009-ZU11EG
• 2× ADRV9009
• ZynqMP-ZU11EG

4.Doppler Radar with GNU Radio

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 38FTC | Orlando, FL | December 11-15, 2023

► What is GNU Radio?

► GNU Radio is a free & open-source software development toolkit that provides signal processing

blocks to implement software radios. It can be used with readily-available low-cost external RF

hardware to create software-defined radios, or without hardware in a simulation-like environment.

It is widely used in research, industry, academia, government, and hobbyist environments to

support both wireless communications research and real-world radio systems.

4.Doppler Radar with GNU Radio

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 39FTC | Orlando, FL | December 11-15, 2023

► In the terminal, run the command “gnuradio-companion” to open GNU Radio Companion.

► After the application opens, go to File -> Open ~/Desktop/ftc23_sdr/gnuradio/doppler_radar/doppler_radar.grc file

► Connect the provided antennas to Rx and Tx of Pluto as depicted in the below picture and connect the Pluto to the PC using the

USB Cable provided.

4.Doppler Radar with GNU Radio

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 40FTC | Orlando, FL | December 11-15, 2023

ADALM
Pluto

Rx

Tx fRx = fTx - Δf

fRx = fTx + Δf

𝛥𝑓 = 𝑓
2⋅𝒗

𝑐

Received Signal after LPF – Time domain

Receive Signal Raw – Time domain

Received Signal after BRF - Time domain

Received Signal after BRF - Frequency domain

Received Signal after LPF – Frequency domain

Receive Signal Raw – Frequency domain

Receiver

Transmitter

0

Frequency

Amplitude

Offset_freq

Offset_freq - Δf Offset_freq + Δf

Band Reject Filter
Band Pass Filter

Theory

Implementation
Pluto
Interface
Blocks

Band
Reject
Filter

Band
Pass
Filter

5.Binary Shift Keying in Python

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 41FTC | Orlando, FL | December 11-15, 2023

►Binary Shift Keying is a type of Phase Modulation where

the symbols transmitted are 0 and 1

►What is Phase Modulation?

Input Bits (In phase) Time

BPSK Modulated
Output

Time

I

Q

10Q = 0

BPSK Constellation:

Symbols: 1 -> 1 + 0j

 0 -> -1 + 0j

5.Binary Shift Keying in Python

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 42FTC | Orlando, FL | December 11-15, 2023

►GSM
►Satellite Television
►Wi-Fi
►Many Others

►Where is Phase Modulation used?

5.Binary Shift Keying in Python

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 43FTC | Orlando, FL | December 11-15, 2023

►Phase Offset of LO at receiver

►Frequency Offset of LO at receiver

►Variation of these two with time, distance and temperature

(as we saw in the last application when frequency was varying with

the change of distance)

►What are the problems when demodulating PSK signals?

►Luckily, all these can be solved by software!

5.Binary Shift Keying in Python

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 44FTC | Orlando, FL | December 11-15, 2023

► Go to ~/Desktop/python/bpsk_loopback/bpsk_pluto_loopback.py and open with Thony Python IDE.

► Connect Rx and Tx using the SMA cable from the kit (as in the picture from below) and connect the Pluto to the

PC using the USB Cable provided.

5.Binary Shift Keying in Python

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 45FTC | Orlando, FL | December 11-15, 2023

► Open path/bpsk_pluto_loopback.py with Thony IDE:

► What this code does?

► Transmitter:

Configure
SDR

Create
array of

bits

Interpolate with 16 sps and Remap
symbols: bit 0 -> -1

 bit 1 -> 1

Call tx() function
and transmit

Call rx() function
to receive data

► Receiver:

Adjust the
frequency offset

Select the right
samples and

decimate

Fine frequency
and phase

adjustment

Plot
data

5.Binary Shift Keying in Python

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 46FTC | Orlando, FL | December 11-15, 2023

► How we adjust the frequency offset?

► First square the received signal => all symbols (s(t))^2 will have a constant positive value

► Take the FFT and measure the peak => the measured peak will be at 2*offset_frequency

► Apply frequency correction on received samples based on the above measurement

max_freq is the frequency where the

peak power was measured

5.Binary Shift Keying in Python

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 47FTC | Orlando, FL | December 11-15, 2023

► How do we select the right samples (Mueller and Muller clock recovery technique [])?

► In the below code, the variable “mu” represents the timing offset we have to add to 16sps because we have

to select one from each 16 samples. For example, if mu = 2.43 => we have to shift the input by 2.43 samples.

► After a few iterations of the while loop, “mu” stabilizes and only the correct samples should be pulled.

5.Binary Shift Keying in Python

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 48FTC | Orlando, FL | December 11-15, 2023

► How Fine Frequency Synchronization is done (Costas Loop)?

► It functions like a PLL. We multiply the real part of the sample (I) by the imaginary part (Q), and

because Q should be equal to zero for BPSK, the error function is minimized when there is no phase

or frequency offset that causes energy to shift from I to Q (Q = 0).

5.Binary Shift Keying in Python

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 49FTC | Orlando, FL | December 11-15, 2023

► Transmitter:

Configure
SDR

Create
array of

bits

Interpolate with 16 sps and Remap symbols:
bit 0 -> -1; bit 1 -> 1

Call tx() function
and transmit

Call rx() function to
receive data

► Receiver:

Adjust the
frequency offset

Select the right
samples and

decimate

Fine frequency
and phase

adjustment

Plot
data

► Create the array of bits (this is the data

you want to transmit):

Fig. 1

5.Binary Shift Keying in Python

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 50FTC | Orlando, FL | December 11-15, 2023

Configure
SDR

Create
array of

bits

Interpolate with 16 sps and Remap symbols:
bit 0 -> -1; bit 1 -> 1

Call tx() function
and transmit

Call rx() function to
receive data

Adjust the
frequency offset

Select the right
samples and

decimate

Fine frequency
and phase

adjustment

Plot
data

► Repeat each bit 16 times (interpolate) => 16sps

► For BPSK the data is complex (Q = 0)

► This is ideally what we want to obtain at receiver

(Q = 0, constellation symbols: -1+0j; 1+0j).

► Transmitter:

► Receiver:

Fig. 2 Fig. 3

5.Binary Shift Keying in Python

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 51FTC | Orlando, FL | December 11-15, 2023

Configure
SDR

Create
array of

bits

Interpolate with 16 sps and Remap symbols:
bit 0 -> -1; bit 1 -> 1

Call tx() function
and transmit

Call rx() function to
receive data

Adjust the
frequency offset

Select the right
samples and

decimate

Fine frequency
and phase

adjustment

Plot
data

► This is what we get after receive.

► Observe the phase offset and frequency offset

that needs to be corrected, Q != 0.

► Transmitter:

► Receiver:

Fig. 4 Fig. 5

5.Binary Shift Keying in Python

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 52FTC | Orlando, FL | December 11-15, 2023

Configure
SDR

Create
array of

bits

Interpolate with 16 sps and Remap symbols:
bit 0 -> -1; bit 1 -> 1

Call tx() function
and transmit

Call rx() function to
receive data

Adjust the
frequency offset

Select the right
samples and

decimate

Fine frequency
and phase

adjustment

Plot
data

► After we adjust the frequency offset, we don’t see

so much of the frequency difference in the received

signal, but the phase of the I and Q signals are still not

right.

► Observe samples that fall in the middle due to

inaccurate sampling.

► Transmitter:

► Receiver:

► Q != 0

Fig. 6 Fig. 7

5.Binary Shift Keying in Python

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 53FTC | Orlando, FL | December 11-15, 2023

Configure
SDR

Create
array of

bits

Interpolate with 16 sps and Remap symbols:
bit 0 -> -1; bit 1 -> 1

Call tx() function
and transmit

Call rx() function to
receive data

Adjust the
frequency offset

Select the right
samples and

decimate

Fine frequency
and phase

adjustment

Plot
data

► After selecting the right samples, we get rid of the

ones that fell in the middle of the constellation but

a small phase and frequency offset is still present.

► Transmitter:

► Receiver:

► Q != 0

Fig. 8 Fig. 9

5.Binary Shift Keying in Python

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 54FTC | Orlando, FL | December 11-15, 2023

Configure
SDR

Create
array of

bits

Interpolate with 16 sps and Remap symbols:
bit 0 -> -1; bit 1 -> 1

Call tx() function
and transmit

Call rx() function to
receive data

Adjust the
frequency offset

Select the right
samples and

decimate

Fine frequency
and phase

adjustment

Plot
data

► Observe that after fine tuning the frequency and

the phase, we get the right samples with a few

errors that appear before the Costas Loop

locks onto the right frequency and phase.

► Transmitter:

► Receiver:

► Now Q = 0.

Fig. 12Fig. 11

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 55FTC | Orlando, FL | December 11-15, 2023

► Using PyADI-IIO you can reuse the code and run it on more expensive SDRs like Jupyter and Talise.

ADALM-PLUTO
• AD9363
• Zynq®-7010

Jupiter
• ADRV9002
• ZynqMP-ZU3EG

ADRV9009-ZU11EG
• 2× ADRV9009
• ZynqMP-ZU11EG

5.Binary Shift Keying in Python

6.Quadrature Shift Keying in GNU Radio

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 56FTC | Orlando, FL | December 11-15, 2023

► In the terminal, run the command “gnuradio-companion” to open GNU Radio Companion.

► After the application opens, go to File -> Open add path to qpsk_point_to_point_rx_console.grc file

► Connect the provided antennas to Rx of Pluto as depicted in the below picture and connect the Pluto to the

PC using the USB Cable provided.

6.Quadrature Shift Keying in GNU Radio

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 57FTC | Orlando, FL | December 11-15, 2023

I

Q
01 11

00 10

Symbols: 00 -> 0 + 0j

 01 -> -1 + 1j

 10 -> 1 – 1j

 11 -> 1 + 1j

► QPSK is similar with BPSK but has more symbols.

► PSK with more than 4 symbols (here the amplitude is modulated too):

6.Quadrature Shift Keying in GNU Radio

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 58FTC | Orlando, FL | December 11-15, 2023

► After opening qpsk_point_to_point_rx_console.grc file in GNU Radio Companion you should see this flowgraph:

► We will send you a set of hex values and you can receive them using your Pluto.

Constellation
Receiver

Packet Communication Blocks

Symbol Sync

Frequency Locked Loop
Pluto
Interface
Block

6.Quadrature Shift Keying in GNU Radio

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 59FTC | Orlando, FL | December 11-15, 2023

► After running the qpsk_point_to_point_rx_console.grc flowgraph, you should see the set of values we transmitted

on the console in GNU Radio Companion and on the terminal, as shown below:

7.Receiving QPSK modulated Video with SDRs

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 60FTC | Orlando, FL | December 11-15, 2023

► Using Open Source software such as SDRangel, more complex tasks can be achieved such as receiving and

displaying DATV (Digital Amateur Television).

7.Spectrum Paint

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 61FTC | Orlando, FL | December 11-15, 2023

► Gnu radio - fosphor

Conclusions

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 62FTC | Orlando, FL | December 11-15, 2023

► In SDR, a lot of the signal-processing tasks are moved in software, resulting in a faster development time.

► The software is easily portable between our SDRs (Pluto, Jupiter, Talise) which allows for a lower cost system

for prototyping (such as Pluto).

► There is a lot of open-source software and platforms that can accelerate the development of SDR systems.

► The same SDR hardware can be used in multiple applications that in the past needed separate hardware, resulting

in a much lower cost of the system (for prototyping) and development resources.

References

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 63FTC | Orlando, FL | December 11-15, 2023

[1] Pluto - https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/adalm-pluto.html

[2] Jupiter - https://wiki.analog.com/resources/eval/user-guides/jupiter-sdr/hardware-overview

[3] Talise SOM - https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/adrv9009-zu11eg.html

[4] T. F. Collins, R. Getz, Di Pu, A. M. Wyglinski,- Software-Defined Radio for Engineers,2018, ISBN-13: 978-1-63081-457-1.\

[5] GNU Radio - https://www.gnuradio.org/

[6] M. Lichtman, "PySDR" - https://pysdr.org/

[7] T. F. Collins – https://www.gnuradio.org/grcon/grcon18/presentations/ADI_Transceivers_A_Deep_Dive/

[8] J. Gallachio - https://github.com/gallicchio/learnSDR

[9] SDRangel - https://www.sdrangel.org/

[10] K. Mueller and M. Muller, “Timing recovery in digital synchronous data receivers,” IEEE Trans. Commun.,

vol. C-24, no. 5, pp. 516–531, May 1976.

[11] J. Costas, “Synchronous Communications,” Proceedings of the IEEE, vol. 44, p. 1713-1718, 1956

https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/adalm-pluto.html
https://wiki.analog.com/resources/eval/user-guides/jupiter-sdr/hardware-overview
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/adrv9009-zu11eg.html
https://www.gnuradio.org/
https://pysdr.org/
https://www.gnuradio.org/grcon/grcon18/presentations/ADI_Transceivers_A_Deep_Dive/
https://github.com/gallicchio/learnSDR
https://www.sdrangel.org/

Thank You!

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. FTC | Orlando, FL | December 11-15, 2023 64

Please Remember to Rate this
Session in the Mobile App!

Backup Slides

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. FTC | Orlando, FL | December 11-15, 2023 65

IIO Overview

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. FTC | Orlando, FL | December 11-15, 2023 66

What is IIO?

►Linux kernel Industrial Input / Output
framework
▪ Not really just for Industrial IO

▪ All non-HID IO

▪ ADC, DAC, light, accelerometer, gyro,
magnetometer, humidity, temperature,
pressure, rotation, angular momentum,
chemical, health, proximity, counters, etc.

►In the upstream Linux kernel for more
than 10 years.

►Mailing list:
▪ linux-iio@vger.kernel.org

https://www.kernel.org/doc/html/latest/driver-api/iio/index.html

67FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved.

mailto:linux-iio@vger.kernel.org
http://upload.wikimedia.org/wikipedia/commons/2/2e/Tux_bg.png
https://www.kernel.org/doc/html/latest/driver-api/iio/index.html

Why use IIO for high-speed converter systems & SDR?

►Provides hardware abstraction layer
▪ Allows sharing of infrastructure

▪ Allows developers to focus on the solution

▪ Allows application re-use

►Kernel drivers have low-level & low-
latency access to hardware
▪ MMIO
▪ Interrupts
▪ DMA
▪ Memory

►IIO provides fast and efficient data
transport
▪ From device to application
▪ From application to device
▪ From device to network/storage

68FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved.

IIO – Devices

► Main structure

► Typically corresponds to a single
physical hardware device

► Represented as directories in
sysfs

D E V I C E

B U F F E RC H A N N E LA T T R I B U T E

A T T R I B U T EA T T R I B U T E

1

N

1

0..1

1

N

1

N

1N

E V E N T

1

N

A T T R I B U T E

1

N

1

N

/sys/

bus/

iio/
iio:device0/
iio:device1/
iio:deviceX/

69FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved.

IIO – Attributes

► Describe hardware capabilities

► Allow to configure hardware features
▪ SAMPLING_FREQUENCY
▪ POWERDOWN
▪ PLL_LOCKED
▪ SYNC_DIVIDERS
▪ etc.

► Represented as files in sysfs

D E V I C E

A T T R I B U T E

1

N

ls /sys/bus/iio/devices/
iio:device0 iio:device1 iio:device2 iio:device3 iio:device4
cat /sys/bus/iio/devices/*/name
adm1177
ad9361-phy
xadc
cf-ad9361-dds-core-lpc
cf-ad9361-lpc

70FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved.

IIO – Channels

► Representation of a data channel

► Has direction, type, index and modifier
▪ Direction

▪ IN
▪ OUT

▪ Type
▪ IIO_VOLTAGE
▪ IIO_TEMP, etc.

▪ Index
▪ 0..N

▪ Modifier
▪ IIO_MOD_I, IIO_MOD_Q

► Channel Attributes provide additional information
▪ RAW
▪ SCALE
▪ OFFSET
▪ FREQUENCY
▪ PHASE
▪ HARDWAREGAIN
▪ etc.

D E V I C E

C H A N N E LA T T R I B U T E

A T T R I B U T E

1

N

1

N

1

N

► Example: Read voltage from ADC Channel X in mV

► VoltageX_mV = (in_voltageX_raw + in_voltageX_offset) * in_voltageX_scale

71FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved.

Example Device: AD8366 VGA/PGA Gain Control

72

out_voltage1_hardwaregain

/sys/

bus/

iio/

iio:device0/

dev name out_voltage0_hardwaregain

/sys/bus/iio/iio:device0 # cat name

ad8366-lpc

/sys/bus/iio/iio:device0 # echo 6 > out_voltage1_hardwaregain

/sys/bus/iio/iio:device0 # cat out_voltage1_hardwaregain

5.765000 dB

Shell Commands:

AD8366

0.25dB Step Size
600MHz Bandwidth

SPI

D E V I C E
A T T R I B U T E

C H A N N E L
A T T R I B U T E

FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved.

IIO – Buffers

►Used for continuous data
capture/transmit

►Channels can be enabled/disabled
►Channels specify their data layout
▪ [be|le]:[s|u]bits/storagebitsXrepeat[>>shift]

►/dev/iio:deviceX allows read()/write()
access

►Configuration using sysfs files
►Support for different buffer

implementations
▪ Software FIFO
▪ DMA Buffer
▪ Device specific buffer

D E V I C E

B U F F E RC H A N N E LA T T R I B U T E

A T T R I B U T EA T T R I B U T E

1

N

1

0..1

1

N

1

N

1N

1

N

73FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved.

IIO – DMA buffer

►DMA is used to copy data
from device to memory

►mmap() is used to make data
available in the application

►Allows low overhead high-
speed data capture

►Data is grouped into chunks
(called DMA blocks) to
manage ownership
▪ Either application or

driver/hardware owns a block
▪ Samples per block are

configurable
▪ Number of blocks are

configurable

Application DMA Controler

Incoming queue

Outgoing queue

…

…

Kernel spaceUser space

74FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved.

IIO – libiio

► System library

► Abstracts away low level details of the IIO kernel ABI
▪ Kernel ABI is designed to be simple and efficient
▪ libiio focuses on ease of use

► Provides high-level C, C++, C# or Python
programming interface to IIO (Language bindings)
▪ Write your IIO application in your favorite language

► Cross Platform (Linux, Windows, MacOS X, BSD)

► Available as
▪ Official DEBIAN package
▪ RPM package
▪ OpenEmbedded Layer meta-oe/libiio
▪ Buildtroot package
▪ Windows or Mac OS X installer
▪ Etc.

75

#!/usr/bin/env python

import iio

ctx = iio.Context()

for dev in ctx.devices:
 print dev.name

Backends

High-level API

Language Bindings

C C++ C#

For more information:

https://github.com/analogdevicesinc/libiio

http://wiki.analog.com/resources/tools-software/linux-software/libiio_internals

http://analogdevicesinc.github.io/libiio/

FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved.

https://github.com/analogdevicesinc/libiio
https://github.com/analogdevicesinc/libiio
https://github.com/analogdevicesinc/libiio

IIO – libiio – Backends

► Support for backends
▪ Backend takes care of low-level communication details
▪ Provide the same API for applications
▪ Transparent from the applications point of view

► Multiple backends
▪ Local, directly uses the Linux kernel IIO ABI
▪ Network, uses network protocol to talk to (remote) iiod

server which uses it’s local backend
▪ USB, SERIAL

► Allows to create flexible and portable
applications
▪ Write once, deploy everywhere
▪ E.g. develop application on PC, deploy on embedded

system (SoC, FPGA)

76

Backends

local NET USB Seria
l

PCIe

Linux Kernel

IIO NET USB ttyPCI

Remote

IIOD

FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved.

IIO – iiod

►Allows multiplexing between
multiple readers/writers

►Provides support for remote clients
via:
▪ TCP/IP

▪ USB

▪ Serial

►Applications do not need system
level privileges

►Transparent from the applications
point of view

77FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved.

►System library
►Abstracts away low level details of the IIO

kernel ABI
▪ Kernel ABI is designed to be simple and efficient
▪ libiio focuses on ease of use

►Provides high-level C, C++, C# or Python
programming interface to IIO (Language
bindings)

78

IIO – libiio

For more information:

https://github.com/analogdevicesinc/libiio

http://wiki.analog.com/resources/tools-software/linux-software/libiio_internals

http://analogdevicesinc.github.io/libiio/

©2019 Analog Devices, Inc. All rights reserved.

rx = adi.AD9361.Rx('uri','ip:192.168.2.1’);
rx.channelCount = 2;
rx.CenterFrequency = 2.4e9;
rx.SamplingRate = 5e6;

for k=1:10
 valid = false;
 while ~valid
 [out, valid] = rx();
 end
end

Backends

High-level API

Language Bindings

C C++ C# MATLAB

FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved.

http://upload.wikimedia.org/wikipedia/commons/2/2e/Tux_bg.png

IIO – Architecture Summarized

79FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved.

Infrastructure

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. FTC | Orlando, FL | December 11-15, 2023 80

►Key Concepts:
▪ All components are open, supported, and documented (Not all by ADI – Industry Standards)
▪ Customers can take all or pieces of complete stack for end-product
▪ All components have a long maintenance model
▪ Released components have long history +10 years (customers already familiar)

►Design Strategy
▪ Provide starting point close to customer end system
▪ Maximal reuse of components
▪ Minimize learning between platforms
▪ Justification through customer request and ROI
▪ Be aware of ecosystem requirements
▪ Leverage modern practices but minimize disruptive changes
▪ Be transparent
▪ Optimize for customer systems not internal development

Standardize Stack and Component Integration

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 81FTC | Orlando, FL | December 11-15, 2023

► Supporting many customer system
level use cases

► Providing tools for debug

► Meeting customer at their tools

Full Stack (IIO/Linux based) HDL Designs

► Common HDL across all IIO reference designs

► Full stack reference Designs include JESD204
physical layers (XCVR); link layers; and transport
layers.
▪ termination to DMA via a AXI-STREAM or FIFO interface
▪ Runs across different Intel and Xilinx carriers

► Are designed to be disconnected to “insert
custom signal processing”
▪ Your modem, Your signals intelligence, etc

► Example designs show how to use MUX in
different places in design, to stream debug data
(I/Q samples, or payload (data buffers)) as IIO
streams.

► Works with industry standard debug tools:
▪ Xilinx Integrated Logic Analyzer
▪ Intel Signal Tap
▪ MathWorks HDL Verifier (in SoC Blockset)

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved.82
FTC | Orlando, FL |
December 11-15,
2023

► We design and support interface logic for various ADI
IC devices, encapsulating any and all obscure designs,
to provide a common, easy to understand and
consistent interface that is portable across
commonly available FPGA devices and standard cell
libraries.
▪ Full stack IP cores to manage physical, link and transport

layers, using standard interfaces. (AXI, FIFO)

▪ Portable IP cores for Intel/Altera Quartus and
Xilinx Vivado

▪ Open source, documentation and support
www.github.com/analogdevicesinc/hdl

▪ Verilog HDL source files, Vivado and Intel constraint files

▪ Updated and maintained to the latest versions of the tools

▪ Tested and proven on various hardware platforms

▪ Modular design, easy to use, scale, debug and customize

FPGA HDL Cores

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 83FTC | Orlando, FL | December 11-15, 2023

http://www.github.com/analogdevicesinc/hdl

Modular Stack: Following the Industry

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 84FTC | Orlando, FL | December 11-15, 2023

ADQUADMXFE1EBZAD9081-FMCA-EBZ

JESD204 Interface Framework

► System-level integrated HDL and software
framework covering the whole stack
▪ Hardware: Reference and rapid prototyping systems
▪ HDL: Components for JESD204 protocol handling
▪ Software: Drivers to manage clock-chips, converters

and HDL

► Components have been co-designed for
improved interoperability

► Key features
▪ Automatic interface configuration based on application

settings
▪ High-level API

▪ Dynamic re-configuration
▪ Improved diagnostics

► ADI provides full stack reference designs
▪ Works out of the box
▪ Starting point for development of custom designs

JESD204
Interface Framework

FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 85

Diagnostics (debugability)
► Statistical Eyescan, Bit-error-rate

monitoring
▪ Detect electrical signal integrity issues

► Clock rate monitoring for all system clocks
▪ Detect bad clock wiring
▪ Detect clock failures

► Initial lane sequence monitoring and
verification
▪ Detect lane swaps

► Lane arrival monitoring (relative to SYSREF)
▪ Detect potential sources of non-deterministic latency

► SYSREF alignment monitoring
▪ Detect SYSREF timing and configuration issues

► Continuous monitoring
▪ Application is notified as soon as failure occurs

JESD204
Interface Framework

FTC | Orlando, FL | December 11-15, 2023Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 86

PyADI-JIF: JESD Interface Framework Configurator
►JESD204 and clock configuration

solver and exploration tool
►Compliments ADI JESD Framework

drivers and HDL IP
►Models converters, clock chips, and

FPGAs together so all constraints are
considered

►Supported parts include:
▪ AD9680, AD9144, ADRV9009, AD9081/2, …
▪ AD9523-1, AD9528, HMC7044, LTC6952, …
▪ Xilinx FPGAs
▪ More being added every day

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved.
87 FTC | Orlando, FL | December 11-15, 2023

JIF Workflow: High-Level Config To Hardware

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. 88FTC | Orlando, FL | December 11-15, 2023

► JIF Workflow is a
connected set of tests
that show full end-to-
end configuration to
deployment to HW

► System level
acceptance test

Nebula (optional)

End-To-End Test Flow

Thank You!

Analog Devices Confidential Information. ©2023 Analog Devices, Inc. All rights reserved. FTC | Orlando, FL | December 11-15, 2023 89

Please Remember to Rate this
Session in the Mobile App!

	Slide 1
	Slide 2: Typical Customer Design Flow
	Slide 3: Software in the Design-in Journey
	Slide 4: Evaluation, Test and Analysis
	Slide 5: Algorithmic Development, Modeling, Prototyping
	Slide 6: Building Blocks for development and new revenue streams
	Slide 7: Common Architecture Makes It Easy to Transition Between Platforms
	Slide 8
	Slide 9: ACE ADGenericIIO Board Plugin
	Slide 10: IIO-Scope
	Slide 11: Generic plugins
	Slide 12: Specific control plugins
	Slide 13: IIO – libiio – Command line tools
	Slide 14: What‘s next?
	Slide 15: qIQ Receiver
	Slide 16
	Slide 17: MATLAB Simulink Integration
	Slide 18: MATLAB: Advanced Application Level Support
	Slide 19: IIO Driver
	Slide 20
	Slide 21: ADALM-PLUTO (PlutoSDR) Platform to get familiar with ADI’s SDR infrastructure, focus on streaming
	Slide 22: Software, Programmable Logic & Hardware
	Slide 23
	Slide 24: Workshop Contents
	Slide 25: 1. What is SDR (Software Defined Radio)?
	Slide 26: 1. What is SDR (Software Defined Radio)?
	Slide 27: Hardware
	Slide 28: 2. IIO-Scope
	Slide 29: 3.Transmit and receive a complex sinusoid with Python
	Slide 30: 3.Transmit and receive a complex sinusoid with Python
	Slide 31: 3.Transmit and receive a complex sinusoid with Python
	Slide 32: 3.Transmit and receive a complex sinusoid with Python
	Slide 33: 3.Transmit and receive a complex sinusoid with Python
	Slide 34: 3.Transmit and receive a complex sinusoid with Python
	Slide 35: 3.Transmit and receive a complex sinusoid with Python
	Slide 36: 3.Transmit and receive a complex sinusoid with Python
	Slide 37: 3.Transmit and receive a complex sinusoid with Python
	Slide 38: 4.Doppler Radar with GNU Radio
	Slide 39: 4.Doppler Radar with GNU Radio
	Slide 40: 4.Doppler Radar with GNU Radio
	Slide 41: 5.Binary Shift Keying in Python
	Slide 42: 5.Binary Shift Keying in Python
	Slide 43: 5.Binary Shift Keying in Python
	Slide 44: 5.Binary Shift Keying in Python
	Slide 45: 5.Binary Shift Keying in Python
	Slide 46: 5.Binary Shift Keying in Python
	Slide 47: 5.Binary Shift Keying in Python
	Slide 48: 5.Binary Shift Keying in Python
	Slide 49: 5.Binary Shift Keying in Python
	Slide 50: 5.Binary Shift Keying in Python
	Slide 51: 5.Binary Shift Keying in Python
	Slide 52: 5.Binary Shift Keying in Python
	Slide 53: 5.Binary Shift Keying in Python
	Slide 54: 5.Binary Shift Keying in Python
	Slide 55: 5.Binary Shift Keying in Python
	Slide 56: 6.Quadrature Shift Keying in GNU Radio
	Slide 57: 6.Quadrature Shift Keying in GNU Radio
	Slide 58: 6.Quadrature Shift Keying in GNU Radio
	Slide 59: 6.Quadrature Shift Keying in GNU Radio
	Slide 60: 7.Receiving QPSK modulated Video with SDRs
	Slide 61: 7.Spectrum Paint
	Slide 62: Conclusions
	Slide 63: References
	Slide 64
	Slide 65
	Slide 66
	Slide 67: What is IIO?
	Slide 68: Why use IIO for high-speed converter systems & SDR?
	Slide 69: IIO – Devices
	Slide 70: IIO – Attributes
	Slide 71: IIO – Channels
	Slide 72: Example Device: AD8366 VGA/PGA Gain Control
	Slide 73: IIO – Buffers
	Slide 74: IIO – DMA buffer
	Slide 75: IIO – libiio
	Slide 76: IIO – libiio – Backends
	Slide 77: IIO – iiod
	Slide 78: IIO – libiio
	Slide 79: IIO – Architecture Summarized
	Slide 80
	Slide 81: Standardize Stack and Component Integration
	Slide 82: Full Stack (IIO/Linux based) HDL Designs
	Slide 83: FPGA HDL Cores
	Slide 84: Modular Stack: Following the Industry
	Slide 85: JESD204 Interface Framework
	Slide 86: Diagnostics (debugability)
	Slide 87: PyADI-JIF: JESD Interface Framework Configurator
	Slide 88: JIF Workflow: High-Level Config To Hardware
	Slide 89

