
Mihai Bancisor, Valentin Beleca
SSG/CSE (Customer Solutions Enablement)

Software hands-on
training kit: What
software do I need
for my SDR?

Introduction

SDR (Software Defined Radio)

Ex. 1: IIO Oscilloscope

Ex. 2: Transmit and receive a complex sinusoid with
GNU Radio

Ex. 3: Transmit and receive a complex sinusoid with
Python

Ex. 4: How to explore and tweak device attributes

Ex. 5: Doppler Radar with GNU Radio

Ex. 6: Phase Shift Keying – BPSK in Python

Ex. 7: Phase Shift Keying – QPSK in GNU Radio

Ex. 8: Phase Shift Keying – Receive a message in GNU
Radio

Ex. 9: Phase Shift Keying – Receive a message and
store it in a file

Ex. 10: Amplitude Shift Keying – GNU Radio Example

Ex. 11: BPSK without additional digital processing – GNU
Radio

Ex. 12: QPSK - Constellation Modulator in GNU Radio

Ex. 13: QPSK – Frequency Locked Loop in GNU Radio

Ex. 14: QPSK – Symbol Sync in GNU Radio – Hands On

QPSK – Costas Loop in GNU Radio

Other open-source software platforms

Conclusions

Analog Devices Confidential Information—Not for External Distribution. ©2024 Analog Devices, Inc. All Rights Reserved.2

Agenda

FTC | Orlando, FL | November 4-8, 2024

Introduction

FTC | Orlando, FL | November 4-8, 2024Analog Devices Confidential Information—Not for External Distribution. ©2024 Analog Devices, Inc. All Rights Reserved.3

Software hands-on training kit

Scope: a program aimed at providing application specific (e.g. Instrumentation, SDR, Process control & Factory
Automation, Connectivity,…) software trainings covering the relevant software technologies for that application.

Principle: anyone can get all the necessary hardware from analog.com, download the software from ADI’s github,
and access the training material on ADI’s github documentation pages to do the training anywhere, anytime without
the need of custom hardware.

Available trainings: https://analogdevicesinc.github.io/documentation/learning/index.html

FTC | Orlando, FL | November 4-8, 2024Analog Devices Confidential Information—Not for External Distribution. ©2024 Analog Devices, Inc. All Rights Reserved.4

https://analogdevicesinc.github.io/documentation/learning/index.html

Multi-platform device drivers and FPGA IP enable
interfacing any signal chain with any MCU/SoC on any OS

One common middleware enables any application to
work seamlessly with any signal chain on any compute
platform

ADI Software Strategy, Rob Oshana, 2023

• “Our vision is to be a world-class software provider:
software is increasingly important to ADI and our
customers”

• “That begins by building a solid foundation: resilient &
secure supply chain, standard level of quality, consistent
enablement & tooling, integrated hardware/software
co-design, using open-source communities and partners”

©2024 Analog Devices, Inc. All Rights Reserved. 5

Any signal chain to Any application on Any platform

Any ADI signal chain

Any Application local/remote

Device drivers

Linux (1300+)

Any APU

Zephyr (10+)

Many MCUs

no-OS (300+)

Many MCUs Any OS

Middleware
ADI: libiio, pyadi-iio, MATLAB, ROS; Other: gstreamer, …

ADI has the most comprehensive and scalable
offering in the industry

FPGA IP
70+ IPs, 100+ Ref designs, Vendors: Xilinx, Altera, Lattice

SSG/CSE (Customer Solutions Enablement)

FTC | Orlando, FL | November 4-8, 2024Analog Devices Confidential Information—Not for External Distribution. ©2024 Analog Devices, Inc. All Rights Reserved.6

JESD204

framework
SPI Engine

Kuiper Linuxpyadi-iio

MATLAB

toolboxes

QA

framework

no-OS libIIO

Linux drivers

(1300+)

no-OS drivers

(300+)

FPGA IP

cores (70+)

MATLAB

device API

Python

device API

HW Reference

Designs

RoS drivers

SDR

High-speed

Instrumentation

Process Control &

Factory automation
Robotics

Precision

Instrumentation
Energy

Scopy iio-osc

Consumer

Healthcare

C
u

s
to

m
e

r
S

u
p

p
o

rt

Solutions

Product

enablement

Software

Infrastructure

HW

Reference

Designs

(250+)

ADI Analog &
SW FAEs

Analog Devices Confidential Information—Not for External Distribution. ©2024 Analog Devices, Inc. All Rights Reserved.7

Typical Customer Design Flow

FTC | Orlando, FL | November 4-8, 2024

Research

• Behavioral
Simulation

• Device Evaluation
•Meassure: SFDR,

SNR, EVM, NF,
NSD, etc.

Algorithm
Development

• MATLAB/Python/G
RC reference
implementation

• Hardware
streaming

Design Elaboration

• Modeling
•MATLAB/Python/G

RC
• Hardware

streaming
• Data type

conversion

Prototype

• Deployment to
development board

• Design optimization
• HDL Integration
• Driver Integration

Production

• Deployment to
custom hardware

• Validation with
complete hardware
solution

PlutoSDR/JupiterSDR

Evaluation board FMC + FPGA Carrier of choice

Full Custom design using same HDL/SW/Infrastructure

Analog Devices Confidential Information—Not for External Distribution. ©2024 Analog Devices, Inc. All Rights Reserved.8

Software in the Design-in Journey

FTC | Orlando, FL | November 4-8, 2024

Evaluation & Research
Evaluation Board,
Software Model*

Data Capture,
Analysis, Algorithm

Development
3rd Party Tool Support

Prototyping
Firmware Applications

& Linux Support

Development & Production
No-OS & Linux drivers & HDL

f(x)

“I need to configure, capture and analyze data
as quickly and simply as possible.”

- Analog Engineer

“I want to model and process data using
familiar tools.”
- Modelling/Domain Expert

“I need to implement the software and/or
digital interface with my host MCU/FPGA”

- Embedded Software & Digital HDL Engineers

“I want to target more representative hardware
and software configurations.”

- Embedded Software Engineer

Increasing Technical Expertise & Time* Software Model is optional

Analog Devices Confidential Information—Not for External Distribution. ©2024 Analog Devices, Inc. All Rights Reserved.9

Evaluation, Test and Analysis

FTC | Orlando, FL | November 4-8, 2024

Embedded MPSOC

ARM CORTEX A53 Processing System

Windows / Linux / Mac HostAnalog Devices
Transceiver or

ADC/DAC

libIIO
remote

MATLAB/Simulink Model

IIO
System Object

Linux

libIIO
local

iiod
TCP/IP
ServerKernel Drivers

Programmable Logic

Transciever
HDL Interface

TCP/IPSYSFS

Analog Devices
Microwave

Data

SPI/GPIO

Analog IF
Digitizer

RF /
Microwave

SPI/GPIO CONTROL

Embedded MPSOC

ARM CORTEX A53 Processing System

Windows / Linux / Mac HostAnalog Devices
Transceiver or

ADC/DAC

libIIO
remote

Python Script

IIO
System Object

Linux

libIIO
local

iiod
TCP/IP
ServerKernel Drivers

Programmable Logic

Transciever
HDL Interface

TCP/IPSYSFS

Analog Devices
Microwave

Data

SPI/GPIO

Analog IF
Digitizer

RF /
Microwave

SPI/GPIO CONTROL

Embedded MPSOC

ARM CORTEX A53 Processing System

Windows / Linux / Mac HostAnalog Devices
Transceiver or

ADC/DAC

libIIO
remote

Python Script

IIO
System Object

Linux

libIIO
local

iiod
TCP/IP
ServerKernel Drivers

Programmable Logic

Transciever
HDL Interface

TCP/IPSYSFS

Analog Devices
Microwave

Data

SPI/GPIO

Analog IF
Digitizer

RF /
Microwave

SPI/GPIO CONTROL

IIO
Oscilloscope

Single cohesive

software solution -

meeting customers

in their ecosystem

or at their tools of

choice

❑ Product Evaluation
❑ Using Hardware & Software

Components to confirm that
the Converter meets the
Application needs

❑ Time is (very roughly)
proportional to complexity
and how application specific
it needs to be

Analog Devices Confidential Information—Not for External Distribution. ©2024 Analog Devices, Inc. All Rights Reserved.10

Algorithmic Development, Modeling, Prototyping

FTC | Orlando, FL | November 4-8, 2024

Embedded MPSOC

ARM CORTEX A53 Processing System

Windows / Linux / Mac HostAnalog Devices
Transceiver or

ADC/DAC

libIIO
remote

MATLAB/Simulink Model

IIO
System Object

Linux

libIIO
local

iiod
TCP/IP
ServerKernel Drivers

Programmable Logic

Transciever
HDL Interface

TCP/IPSYSFS

Analog Devices
Microwave

Data

SPI/GPIO

Analog IF
Digitizer

RF /
Microwave

SPI/GPIO CONTROL

Embedded MPSOC

ARM CORTEX A53 Processing System

Windows / Linux / Mac HostAnalog Devices
Transceiver or

ADC/DAC

libIIO
remote

Python Script

IIO
System Object

Linux

libIIO
local

iiod
TCP/IP
ServerKernel Drivers

Programmable Logic

Transciever
HDL Interface

TCP/IPSYSFS

Analog Devices
Microwave

Data

SPI/GPIO

Analog IF
Digitizer

RF /
Microwave

SPI/GPIO CONTROL

Embedded MPSOC

ARM CORTEX A53 Processing System

Windows / Linux / Mac HostAnalog Devices
Transceiver or

ADC/DAC

libIIO
remote

Python Script

IIO
System Object

Linux

libIIO
local

iiod
TCP/IP
ServerKernel Drivers

Programmable Logic

Transciever
HDL Interface

TCP/IPSYSFS

Analog Devices
Microwave

Data

SPI/GPIO

Analog IF
Digitizer

RF /
Microwave

SPI/GPIO CONTROL

IIO
Oscilloscope

Embedded MPSOC

ARM CORTEX A53 Processing System

Windows / Linux / Mac HostAnalog Devices
Transceiver or

ADC/DAC

libIIO
remote

Python Script

IIO
System Object

Linux

libIIO
local

iiod
TCP/IP
ServerKernel Drivers

Programmable Logic

Transciever
HDL Interface

TCP/IPSYSFS

Analog Devices
Microwave

Data

SPI/GPIO

Analog IF
Digitizer

RF /
Microwave

SPI/GPIO CONTROL

GRC Flowgraph

gr-iio

Embedded MPSOC

ARM CORTEX A53 Processing System

Windows / Linux / Mac HostAnalog Devices
Transceiver or

ADC/DAC

libIIO
remote

Python Script

IIO
System Object

Linux

libIIO
local

iiod
TCP/IP
ServerKernel Drivers

Programmable Logic

Transciever
HDL Interface

TCP/IPSYSFS

Analog Devices
Microwave

Data

SPI/GPIO

Analog IF
Digitizer

RF /
Microwave

SPI/GPIO CONTROL

Embedded MPSOC

ARM CORTEX A53 Processing System

Windows / Linux / Mac HostAnalog Devices
Transceiver or

ADC/DAC

libIIO
remote

MATLAB/Simulink Model

IIO
System Object

Linux

libIIO
local

iiod
TCP/IP
ServerKernel Drivers

Programmable Logic

Transciever
HDL Interface

TCP/IPSYSFS

Analog Devices
Microwave

Data

SPI/GPIO

Analog IF
Digitizer

RF /
Microwave

SPI/GPIO CONTROL

❑ Product Prototyping
❑ Plug ‘n’ Play hardware and

software, see the key
features/performance of the
part

❑ Configure, Capture signals or
Generate waveforms in 10-15
minutes

Single cohesive

software solution -

meeting customers

in their ecosystem

or at their tools of

choice

Analog Devices Confidential Information—Not for External Distribution. ©2024 Analog Devices, Inc. All Rights Reserved.11

Building Blocks for development and new revenue streams

FTC | Orlando, FL | November 4-8, 2024

Open Market Development
platforms

(Off the shelf carrier boards)

ADI Evaluation boards

(Daughter Boards)

FMC Compatible Dev platforms
Variety of FMC Compatible Boards

 MxFE, Navassa, Talise, Catalina, Madura

Evaluation/Prototyping

H
ar

dw
ar

e
D

ev
el

op
m

en
t

SW
, I

nf
ra

st
ru

ct
ur

e
&

 T
oo

ls

Open Source & Bare Metal
Device level Drivers

HDL/FPGA
Reference Designs

Matlab
Toolbox Support

ADI LibIIO

Options for different RF Applications

ADI IIO-Scope

LVDS/CMOS JESD204B JESD204B/C
61.44MSPS 491MSPS 12GSPS/4GSPS
 2 Channel 2 Channel 4 Channel

 Channel Sampling Speed

C
ha

nn
el

 B
an

dw
id

th

 4

0M
H

z
 7

0M
H

z

 2

00
M

H
z

 2

G
H

z

Analog Devices Confidential Information—Not for External Distribution. ©2024 Analog Devices, Inc. All Rights Reserved.12

Common Architecture Makes It Easy to Transition Between Platforms

FTC | Orlando, FL | November 4-8, 2024

► Shares same software/HDL/hardware stack
▪ Makes it easy to move from one to the other
▪ Differentiated on form factor, number of channels,

connectivity, expandability, FPGA resources, CPU
resources

► Start with ADALM-PLUTO
▪ Stream to MATLAB®, Simulink®, or GNU Radio via USB
▪ Take data in the field
▪ Validate your communication, radar, or SIGINT algorithms

in MATLAB, Simulink, or GNU Radio
▪ Start moving to embedded signal processing

▪ Transition to production-ready SOM
▪ Use custom chip-down design

► Same tools, same libraries, same HDL
▪ Vivado, MATLAB, IIO work the same on all platforms
▪ Common HDL at github.com/analogdevicesinc/hdl
▪ Common Linux® kernel at

github.com/analogdevicesinc/linux

ADALM-PLUTO
• AD9363
• Zynq®-7010

Jupiter
• ADRV9002
• ZynqMP-ZU3EG

MxFE
• AD9082/AD9081
• ZCU102, ZC706, VCK190,

VCU118, VCU128, etc.

QUAD-MxFE Platform
• 4x AD9082/81
• MCS
• VCU118

ADRV9009-ZU11EG
• 2× ADRV9009
• ZynqMP-ZU11EG

http://github.com/analogdevicesinc/hdl
http://github.com/analogdevicesinc/linux

What is Kuiper

It is the primary distribution for product evaluation boards and reference
designs

It includes pre-built boot files, device drivers and a variety of
development utilities

The first release was published at the beginning of 2021

Supports over 120 FPGA-based projects and over 25 Raspberry Pi-based
designs

ADI Kuiper Linux is an open-source Linux Distribution based on Raspberry Pi OS

FTC | Orlando, FL | November 4-8, 2024Analog Devices Confidential Information—Not for External Distribution. ©2024 Analog Devices, Inc. All Rights Reserved.1
3

SDR Hardware

Analog Devices Confidential Information—Not for External Distribution. ©2024 Analog Devices, Inc. All Rights Reserved.15

What is SDR (Software Defined Radio)?
Reconfigurable, multipurpose radio:

Reconfigurable

Software

Optimized only for a few applications (Super Heterodyne):
(Not SDR)

Zero-IF

FTC | Orlando, FL | November 4-8, 2024

Analog Devices Confidential Information—Not for External Distribution. ©2024 Analog Devices, Inc. All Rights Reserved.16 FTC | Orlando, FL | November 4-8, 2024
16

RF
Design

SoC
Assembly

Digital
Hardware

DSP
Algorithms

Software
Engineering

Designs are complex
• Multiple skillsets

• Multiple technologies

Radio Developer needs
• Fast prototyping

• Complete reference designs
• antenna to MATLAB

• Streaming

• Targeting

• Easy to use prototyping platforms

• Complete workflows – easy to use toolchains

• Path to production

• Reduced system complexity

• Hardware

• Software

• Mechanics

• Reduced risk

Ease of use sometimes beats performance
• Many decisions are made by the system engineer in the

prototyping stage

SDR

Communications theory

RF Hardware skillsWhat is SDR (Software Defined Radio)?

Main Specs:

- 2x Tx and 2x Rx ports 50 Ohm

- LO Freq. Range: 70MHz -> 6GHz

- BW : 56MHz

- Sample rate: 61.44MSPS; 14 bits

- Interfaces: USB2, UART

ADALM-PLUTO

Analog Devices Confidential Information—Not for External Distribution. ©2024 Analog Devices, Inc. All Rights Reserved.17

Hardware

FTC | Orlando, FL | November 4-8, 2024

Main Specs:

- 2x Tx and 2x Rx ports 50 Ohm

- LO Freq. Range: 30MHz -> 6GHz

- BW : 40MHz

- Sample rate: 61.44MSPS; 16 bits

- Interfaces: USB3, 1Gb Ethernet,
Display Port, UART

Main Specs:

- 4x Tx and 4x Rx (expandable to 8
TRx)

- LO Freq. Range: 75MHz -> 6GHz

- RX BW: 200MHz, TX BW: 450MHz

- Interfaces: USB3, 1Gb Ethernet,
Display Port, PCIe 3.0 ,SFP, QSFP,
UART

AD-JUPITER-EBZ ADRV9009 SOM

~ 230 $
~ 2997 $ ~ 8955 $

Digitizer
• ADRV9002 RF transceiver

• 2 RX, 2 TX (A and B)
• Frequency range 30 MHz to 6 GHz
• 12 KHz to 40 MHz BW
• 61.44 MSps maximum sampling rate

• Internal/External Cock selection
• External MCS (multi chip synchronization)
• RF calibration switches
• Customizable RF front end (B channels)
Processing
• Zynq UltraScale+ MPSoC XCZU3EG
• DDR4 – 16 Gb (2 GB)
• Boot source

• FLASH memory 512Mb
• SD CARD 3.0

Interfaces
• USB 3.1 Gen 1 (Type C)
• Ethernet 1000BASE-T RGMII
• Display Port v1.2 (1080p)
• SATA 3
• 16 LVTTL GPIOs

Analog Devices Confidential Information—Not for External Distribution. ©2024 Analog Devices, Inc. All Rights Reserved.18

AD-JUPITER-EBZ

FTC | Orlando, FL | November 4-8, 2024

Analog Devices Confidential Information—Not for External Distribution. ©2024 Analog Devices, Inc. All Rights Reserved.19

SW and HDL Architecture

FTC | Orlando, FL | November 4-8, 2024

IIO Subsystem

ADRV9001-PHY
IIO Driver

(adrv9001-phy)

AXI-ADC
RX

Transport Layer
IIO Driver

(axi-adrv9002-rx-lpc)

AXI-DAC-DDS
TX

Transport Layer
IIO Driver

(axi-adrv9002-tx-lpc)

ADRV9002

AXI-ADRV9001 HDL Core SPI GPIO

LVDS

DMA
Subsystem

CLK
Subsystem

SPI
Subsystem

GPIO
Subsystem

DMA DMA

Hardware

FPGA

Software

Kernel

PS8
SPI

PS8
GPIO

Setup

FTC | Orlando, FL | November 4-8, 2024Analog Devices Confidential Information—Not for External Distribution. ©2024 Analog Devices, Inc. All Rights Reserved.20

Jupiter or Pluto

Jupiter or Pluto

uUSB to USB-A cable

1x or 2x SMA cables (Jupiter)
or
1x SMA cable (Pluto)

Mouse with USB-A

Monitor with HDMI

RPI4 Keyboard

2x USB-C 5V Power Sources

ETH. to ETH. Cable
(for Jupiter)

Headphones
with USB-C to
USB-A adapter

microHDMI to
HDMI cable

At least 32GB
microSD

At least 32GB
microSD (Jupiter)

2x SMA antennas

Hands on section

FTC | Orlando, FL | November 4-8, 2024Analog Devices Confidential Information—Not for External Distribution. ©2024 Analog Devices, Inc. All Rights Reserved.21

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.22

1. IIO Oscilloscope

Transmit and receive a complex sinusoid using the DDS on loopback

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.23

► 1. Open IIO Oscilloscope: Open the terminal from the top bar icon, type “osc” in it and press enter

► 2. Connect to board: Go to Settings -> Connect and type “ip:jupiter.local” on the “Manual” section

1. IIO Oscilloscope

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.24

► 3. Use DDS On loopback: We will transmit a 79KHz tone on top of the Tx LO and receive it on the Rx Path. Make sure

the Tx LO and Rx LO have the same frequency.

1. IIO Oscilloscope

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.25

► 4. Open and start the Plot: Go to “File” -> “New Plot”. On the channels window, check both “voltage0_i” and

“voltage0_q”. If you want to switch between time and frequency domain, you can change the Plot Type. To see

peak markers on the Frequency domain, right click on the plot and select “Show Markers”.

► 5. Tweak Tx Attenuation and observe the change in the plot: Decrease or increase the attenuation for Tx1 and

observe the change on the FFT Plot. The range for TX is -41dB to 0dB.

1. IIO Oscilloscope

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.26

► 4. Reboot Jupiter:

► Method 1:

► Open terminal

► Type “ssh root@jupiter.local”, press Enter and enter “analog” as password

► Type “reboot” in the terminal and press Enter

► Method 2:

► Press once the push-button on the back of the Jupiter

► Wait for the LEDs to turn red

► Press once more the push-button to boot again

1. IIO Oscilloscope

! All the instructions you need are also in the
“instructions_ftc2024.pdf” file on your desktop

mailto:root@analog.local

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.27

► Make sure the back panel status blue led is blinking. This

shows that the boot stage is successful.

► Connect Rx and Tx using the SMA cable from the kit by making a loopback between RX1 and TX1.

1. IIO Oscilloscope

! All the instructions you need are also in the
“instructions_ftc2024.pdf” file on your desktop

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.28

2. Transmit and receive a
complex sinusoid with

GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.29

► What is GNU Radio?

► GNU Radio is a free & open-source software development toolkit that provides signal processing

blocks to implement software radios. It can be used with readily-available low-cost external RF

hardware to create software-defined radios, or without hardware in a simulation-like environment.

It is widely used in research, industry, academia, government, and hobbyist environments to

support both wireless communications research and real-world radio systems.

2. Transmit and receive a complex sinusoid with GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.30

ⅇ𝑗2𝜋𝑓𝑡 = 𝑐𝑜𝑠 2𝜋𝑓𝑡 + 𝑗 𝑠𝑖𝑛 2𝜋𝑓𝑡

Real
Sinusoid

Complex
Sinusoid

ⅇ𝑗2𝜋𝑓𝑡 + ⅇ−𝑗2𝜋𝑓𝑡 = 2 𝑐𝑜𝑠 2𝜋𝑓𝑡 ► Real sinusoid:

► Complex sinusoid:
Amplitude

Re

Im

Time

Im

Re

Time plot

Constellation Plot

0

1

-1

Re = 1

Im = 0
Re = 0

Im = 1

► Complex sinusoid (Constellation Plot):

I (In phase) Q (Quadrature phase)

2. Transmit and receive a complex sinusoid with GNU Radio

What is a complex sinusoid?

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.31

Transmitter

Receiver

Jupiter Tx

Jupiter Rx

[-1;1]
to
 [-(215-1); 215 +1]

[-(215-1); 215 +1] to [-1;1]

2. Transmit and receive a complex sinusoid with GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.32

► To run the flowgraph press the arrow from the top bar inside the app as shown below.

2. Transmit and receive a complex sinusoid with GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.33

► Tweak this Slider to change the

frequency of the Tx sinusoid

► Tweak these Sliders to change the

gain on Rx and the attenuation on Tx

2. Transmit and receive a complex sinusoid with GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.34

► In GNU Radio companion app, open from File -> Open:

/home/analog/Desktop/ftc_2024/1_sinewave_loopback_gnuradio/sinewave_loopback_jupiter.grc

► To open GNU Radio run the following commands:

$ cd /home/analog/Desktop

$ sudo ./start-grc.sh

► Connect Rx and Tx using the SMA cable from the kit by making a loopback between RX1 and TX1.

2. Transmit and receive a complex sinusoid with GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.35

3. Transmit and receive a
complex sinusoid with

Python

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.36

► PyADI-IIO is a python abstraction module for ADI hardware with IIO drivers to make them easier to

use. The libIIO interface although extremely flexible can be cumbersome to use due to the amount

of boilerplate code required for even simple examples, especially when interfacing with buffers.

This module has custom interfaces classes for specific parts and development systems which can

generally, make them easier to understand and use. To get up and running with a device can be as

simple as a few lines of code.

3. Transmit and receive a complex sinusoid with Python

► What is PyADI-IIO?

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.37

► What does this code do?

► What happens in the hardware?

Configure
SDR

Create a
discrete
complex
sinusoid

Call tx() to transmit
the created

sinusoid as I and Q
data

Call rx() to
receive the I
and Q data

Plot the
received
sinusoid

cos(915MHz*t)

-sin(915MHz*t)

tx_hardwaregain rx_hardwaregain

LPF

LPF Q

Transmitter

I

cos(915MHz*t)

-sin(915MHz*t)
Frequency

Amplitude

20KHz

Receiver

Frequency

Amplitude

915MHz + 20KHz

Q

I

Frequency

Amplitude

20KHz

3. Transmit and receive a complex sinusoid with Python

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.38

3. Transmit and receive a complex sinusoid with Python

Configure
SDR

Create a
discrete
complex
sinusoid

Call tx() to transmit
the created

sinusoid as I and Q
data

Call rx() to
receive the I
and Q data

Plot the
received
sinusoid

Change LO frequency for:
 Tx1, Rx1, Tx2, Rx2

Other Settings
for Rx1 and Tx1

Other Settings
for Rx2 and Tx2

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.39

Configure
SDR

Create a
discrete
complex
sinusoid

Call tx() to transmit
the created

sinusoid as I and Q
data

Call rx() to
receive the I
and Q data

Plot the
received
sinusoid

ⅇ𝑗2𝜋𝑓𝑡 = 𝑐𝑜𝑠 2𝜋𝑓𝑡 + 𝜑 + 𝑗 𝑠𝑖𝑛 2𝜋𝑓𝑡 + 𝜑

3. Transmit and receive a complex sinusoid with Python

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.40

Configure
SDR

Create a
discrete
complex
sinusoid

Call tx() to transmit
the created

sinusoid as I and Q
data

Call rx() to
receive the I
and Q data

Plot the
received
sinusoid

3. Transmit and receive a complex sinusoid with Python

► Using PyADI-IIO, only these functions you have to call to start transmitting:

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.41

Configure
SDR

Create a
discrete
complex
sinusoid

Call tx() to transmit
the created

sinusoid as I and Q
data

Call rx() to
receive the I
and Q data

Plot the
received
sinusoid

3. Transmit and receive a complex sinusoid with Python

Only these two functions needs to be called in order to receive.

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.42

► For this example, use two SMA cables to make loopback between TX1 -> RX1 and TX2 -> RX2 as depicted below:

► Open “python_loopback_sine_jupiter.py” file

using “Thonny” IDE from:

“/home/analog/Desktop/ftc_2024/2_sinewave_loopback_python/”

► To run the python script, click on the “Run” button:

3. Transmit and receive a complex sinusoid with Python

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.43

► Change the profile from command line on Jupiter to the one with 61.44 MHz Sample Rate and run

the python example again:

Commands to run in the termina (! You can copy and paste commands from “terminal_commands.txt”,

which is on Desktop):
First connect to Jupiter with ssh:

$ ssh root@jupiter.local

enter “analog” as password

$ cat /home/analog/workspace/jupiter_profiles/jupiter_61_44MHz_profile.json > /sys/bus/iio/devices/iio\:device1/profile_config

exit ssh connection

$ exit

run again the python code (from Thonny or command line)

$ python3 /home/analog/Desktop/ftc_2024/2_sinewave_loopback_python/python_loopback_sine_jupiter.py

You should see the same plots but with more samples and a wider spectrum.

3. Transmit and receive a complex sinusoid with Python

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.44

► After you finished playing with this example, reboot Jupiter:

► Method 1:

► Open terminal and run the following commands:

► $ ssh root@jupiter.local

► # enter “analog” as password

► $ reboot

► Method 2

► Press once the push-button on the back of the Jupiter

► Wait for the LEDs to turn red

► Press once more the push-button to boot again

3. Transmit and receive a complex sinusoid with Python

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.45

3. Transmit and receive a complex sinusoid with Python
► Using PyADI-IIO you can reuse the code and run it on different SDRs like Pluto or Talise.

ADALM-PLUTO
• AD9363
• Zynq®-7010

Jupiter
• ADRV9002
• ZynqMP-ZU3EG

ADRV9009-ZU11EG
• 2× ADRV9009
• ZynqMP-ZU11EG

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.46

4. How to explore and tweak
device attributes

Analog Devices Confidential Information—Not for External Distribution. ©2024 Analog Devices, Inc. All Rights Reserved.47 FTC | Orlando, FL | November 4-8, 2024

4. How to explore and tweak device attributes

iio_info iio_attr“/sys/bus/iio/devices/iio:deviceX”

Analog Devices Confidential Information—Not for External Distribution. ©2024 Analog Devices, Inc. All Rights Reserved.48 FTC | Orlando, FL | November 4-8, 2024

4. How to explore and tweak device attributes

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.49

► What devices are on Jupiter SDR from a Software perspective?
To see all devices, run the following command in the terminal (not necessarily on the target):

$ iio_attr –u ip:jupiter.local -d

Most Important IIO Devices used in

the examples presented in this

workshop

‘adrv9002-phy’ -> contains most of the configuration attributes (hardwaregain, LO freq. etc.)

‘axi-adrv9002-rx-lpc’ -> ADC on the RX1 path

‘axi-adrv9002-rx2-lpc’ -> ADC on the RX2 path

‘axi-adrv9002-tx-lpc’ -> DAC on the TX1 path

‘axi-adrv9002-tx2-lpc’ -> DAC on the TX2 path

4. How to explore and tweak device attributes

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.50

► Use iio_info command to display the whole context.

4. How to explore and tweak device attributes

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.52

► How to change an attribute from command line (e.g. for hardwaregain of RX1)?

Find the channel name and channel attribute name

$ iio_info | grep –A 200 adrv9002-phy

4. How to explore and tweak device attributes

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.54

► How to change an attribute from command line (e.g. for hardwaregain of RX1)?

 $ iio_attr –u ip:jupiter.local –c –i adrv9002-phy voltage0 hardwaregain 5

4. How to explore and tweak device attributes

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.56

► Some methods to change attributes:

► pyadi-iio ► iio_attr ► GNU Radio

$ iio_attr –u ip:jupiter.local –c –i adrv9002-phy ‘voltage0’ hardwaregain 5

► https://github.com/analo
gdevicesinc/pyadi-
iio/blob/main/adi/adrv90
02.py

► https://wiki.analog.com/resources/tools-
software/linux-software/libiio/iio_attr

► from “/sys/bus/iio/devices/iio:deviceX” on the target
to write 5 in hardwaregain:
$ echo 5 > /sys/bus/iio/devices/iio:device1/in_voltage0_hardwaregain
to read hardwaregain:
$ cat /sys/bus/iio/devices/iio:device1/in_voltage0_hardwaregain

4. How to explore and tweak device attributes

https://github.com/analogdevicesinc/pyadi-iio/blob/main/adi/adrv9002.py
https://github.com/analogdevicesinc/pyadi-iio/blob/main/adi/adrv9002.py
https://github.com/analogdevicesinc/pyadi-iio/blob/main/adi/adrv9002.py
https://github.com/analogdevicesinc/pyadi-iio/blob/main/adi/adrv9002.py
https://wiki.analog.com/resources/tools-software/linux-software/libiio/iio_attr
https://wiki.analog.com/resources/tools-software/linux-software/libiio/iio_attr

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.57

► After you finished playing with this example, reboot Jupiter:

► Method 1:

► Open terminal and run the following commands:

► $ ssh root@jupiter.local

► # enter “analog” as password

► $ reboot

► Method 2

► Press once the push-button on the back of the Jupiter

► Wait for the LEDs to turn red

► Press once more the push-button to boot again

4. How to explore and tweak device attributes

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.58

5. Doppler Radar with
GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.59

Jupiter
SDR

Rx

Tx fRx = fTx - Δf

fRx = fTx + Δf

𝛥𝑓 = 𝑓
2⋅𝒗

𝑐

Receiver

Transmitter

0

Frequency

Amplitude

Offset_freq

Offset_freq - Δf Offset_freq + Δf

Band Reject Filter
Band Pass FilterTheory

Implementation

Band
Reject
Filter

Band
Pass
Filter

Connection
to Audio
Device

Transmitted
1.5 KHz Sinusoid

5. Doppler Radar with GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.60

► After Running the flowgraph, you should hear on the headphones the movement of your hand in front of the antennas

Received Signal after BRF
- Time domain

Received Signal after BRF
- Frequency domain

Receive Signal Raw
– Time domain

Receive Signal Raw
– Frequency domain

Received Signal after BPF
– Time domain Received Signal after BPF

– Frequency domain

5. Doppler Radar with GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.61

► Connect one antenna to RX1 and one to TX1 on Jupiter female SMA ports as depicted in the picture below

► In GNU Radio companion app, open from File -> Open:

/home/analog/Desktop/ftc_2024/3_doppler_radar_gnudio/doppler_radar_jupiter.grc

► To open GNU Radio run the following commands:

$ cd /home/analog/Desktop

$ sudo ./start-grc.sh

► Use the given USB Headphones (plug them into the RPI)

5. Doppler Radar with GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.62

► Conclusions:

- This technique (plus some calculations) can be used to detect the velocity of moving objects in radar

Applications

- The change in frequency can be mapped to speed and direction of movement of the Receiver relative to the

Transmitter

- If this change in frequency when the Receiver is moving relative to the transceiver affects the data received,

methods to correct this change are required.

5. Doppler Radar with GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.63

6. Phase Shift Keying –
BPSK in Python

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.64

► Binary Shift Keying is the simplest type of Phase Modulation where the binary data (bits 0 and 1)
are encoded using two distinct phase states of the carrier.

Encoding: bits -> symbols * carrier_sinusoid

Input Bits (In phase) Time

BPSK Modulated
Output

Time

Q = 0

BPSK Constellation:

Symbols

Encoded Bits

-1+0j

+1+0j

6. Phase Shift Keying – BPSK in Python

0b

-1+0j

1b

1+0j

Q

I

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.65

►GSM
►Satellite Television
►Wi-Fi
►Many Others

►Where is Phase Modulation used?

6. Phase Shift Keying – BPSK in Python

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.66

► In an ideal world where the LO’s of TX and RX are perfectly in sync and where there is no time

Delay between RX and TX:

cos(915MHz*t)

-sin(915MHz*t)

tx_hardwaregain rx_hardwaregain

LPF

LPF Q = 0

Transmitter

I

cos(915MHz*t)

-sin(915MHz*t)

Receiver

Q = 0

I

cos(915MHz*t)

-sin(915MHz*t)

tx_hardwaregain rx_hardwaregain

LPF

LPF Q

Transmitter

I

cos(915MHz*t)

-sin(915MHz*t)

Receiver

Q = 0

I

► In a real world:

in = out

in != out but the

information is still

there

6. Phase Shift Keying – BPSK in Python

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.67

►Phase Offset of LO at RX relative to TX

►Frequency Offset of LO at RX relative to TX

►Variation of these two in time with distance change and temperature change

(as we saw in the last example when frequency was varying with

the change of distance)

►What are the problems when demodulating PSK signals?

►Luckily, all these can be solved by software!

6. Phase Shift Keying – BPSK in Python

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.68

► What this code does?

► Transmitter:

Configure
SDR

Create
array of

bits

Interpolate with 16 sps and
Remap symbols: bit 0 -> -1
 bit 1 -> 1

Call tx() function
and transmit

Call rx() function
to receive data

► Receiver:

Adjust the
frequency offset

Select the right
samples and

decimate

Fine frequency
and phase

adjustment

Plot
data

Differential
Encoding

Differential
Decoding

Shift
Spectrum

6. Phase Shift Keying – BPSK in Python

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.69

6. Phase Shift Keying – BPSK in Python
► What differential encoding and decoding does?

► To transmit a bit of “1” change state (e.g. if previous is “0”, change to “1”;

if previous is “1”, change to “0”).

► To transmit a bit of “0” repeat state (e.g. if previous is “1”, repeat “1”; if previous is “0”, repeat “0”).

► Encoder: ► Decoder:

0b

-1+0j

1b

1+0j

Q

I

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.70

6. Phase Shift Keying – BPSK in Python
► How we adjust the frequency offset?
► First square the received signal => all symbols (s(t))^2 will have a constant positive value

► Take the FFT and measure the peak => the measured peak will be at 2*offset_frequency

► Apply frequency correction on received samples based on the above measurement

max_freq is the frequency where the

peak power was measured

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.71

6. Phase Shift Keying – BPSK in Python
► How do we select the right samples (Mueller and Muller timing recovery technique [6, 10])?

► In the below code, the variable “mu” represents the timing offset we have to add to 16sps because we have

to select one from each 16 samples. For example, if mu = 2.43 => we have to shift the input by 2.43 samples.

► After a few iterations of the while loop, “mu” stabilizes and only the correct samples should be pulled.

We want to sample where

the adjacent symbols cross 0

and discard in between samples.

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.72

6. Phase Shift Keying – BPSK in Python
► How Fine Frequency Synchronization is done (Costas Loop [6], [11])?

► It functions like a PLL. We multiply the real part of the sample (I) by the imaginary part (Q), and

because Q should be equal to zero for BPSK, the error function is minimized when there is no phase

or frequency offset that causes energy to shift from I to Q (Q is the error signal, adjust and keep Q = 0).

0b

-1+0j

1b

1+0j

Q

I

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.73

► Transmitter:

Configure
SDR

Create
array of

bits

Interpolate with 16 sps and
Remap symbols: bit 0 -> -1
 bit 1 -> 1

Call tx() function
and transmit

Differential
Encoding

Shift
Spectrum

6. Phase Shift Keying – BPSK in Python

► Create the array of bits and encode them

with Differential Encoding (this is the data

you want to transmit):

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.74

► Transmitter:

Configure
SDR

Create
array of

bits

Interpolate with 16 sps and
Remap symbols: bit 0 -> -1
 bit 1 -> 1

Call tx() function
and transmit

Differential
Encoding

Shift
Spectrum

6. Phase Shift Keying – BPSK in Python

► Repeat each bit 16 times (interpolate) => 16sps

► For BPSK the data is complex (Q = 0)

► This is ideally what we want to obtain at receiver

(Q = 0, constellation symbols: -1+0j; 1+0j).

► Shift spectrum to a higher frequency by multiplying

with a a complex sinusoid.

► Call sdr.tx() function to transmit the data

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.75

Call rx() function
to receive data

Adjust the
frequency offset

Select the right
samples and

decimate

Fine frequency
and phase

adjustment

Plot
data

Differential
Decoding

► Receiver

6. Phase Shift Keying – BPSK in Python

► This is what we get after receive.

► Observe the phase offset and frequency offset

that needs to be corrected, Q != 0.

► After we adjust the frequency offset, we don’t see so much of the frequency
difference in the received signal, but the phase of the I and Q signals are still not
right.

► Observe samples that fall in the middle due to
inaccurate sampling.

► Q != 0

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.76

Symbol Sync

Call rx() function
to receive data

Adjust the
frequency offset

Select the right
samples and

decimate

Fine frequency
and phase

adjustment

Plot
data

Differential
Decoding

► Receiver

6. Phase Shift Keying – BPSK in Python

► After selecting the right samples, we get rid of the

ones that fell in the middle of the constellation but

a small phase and frequency offset is still present.

► Q != 0

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.77

Costas Loop

Call rx() function
to receive data

Adjust the
frequency offset

Select the right
samples and

decimate

Fine frequency
and phase

adjustment

Plot
data

Differential
Decoding

► Receiver

6. Phase Shift Keying – BPSK in Python

► Observe that after fine tuning the frequency and

the phase, we get the right samples with a few

errors that appear before the Costas Loop

locks onto the right frequency and phase.

► Now Q = 0.

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.78

Call rx() function
to receive data

Adjust the
frequency offset

Select the right
samples and

decimate

Fine frequency
and phase

adjustment

Plot
data

Differential
Decoding

► Receiver

6. Phase Shift Keying – BPSK in Python

► After decoding with differential

decoding, observe that “Bits Rx Decoded”

are the same as “Bits Tx”.

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.79

► Open “bpsk_loopback_jupiter.py” file

using “Thonny” IDE from:

“/home/analog/Desktop/ftc_2024/4_bpsk_loopback_python/”

► To run the python script, click on the “Run” button:

► Connect Rx and Tx using the SMA cable from the kit by making a loopback between RX1 and TX1.

6. Phase Shift Keying – BPSK in Python

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.80

► Using PyADI-IIO you can reuse the code and run it on different SDRs like Pluto or Talise.

ADALM-PLUTO
• AD9363
• Zynq®-7010

Jupiter
• ADRV9002
• ZynqMP-ZU3EG

ADRV9009-ZU11EG
• 2× ADRV9009
• ZynqMP-ZU11EG

6. Phase Shift Keying – BPSK in Python

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.81

7. Phase Shift Keying –
QPSK in GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.82

► QPSK is similar with BPSK but has more symbols.

► PSK with more than 4 symbols (here the amplitude is modulated too):

I

Q
1=01b 2=10b

0=00b 3=11b

-1-1j

-1+1j 1+1j

1-1j

7. Phase Shift Keying – QPSK in GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.83

Constellation
Receiver (Costas Loop)

Symbol Sync

Frequency Locked Loop

Differential
Decoder

Transmitter

Receiver

7. Phase Shift Keying – QPSK in GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.84

Same pattern of symbols

at TX and demodulated RX

With green, you can see the

RX Spectrum after FLL block

Here is the Eye diagram after

Costas loop of the Rx

From this slider you can rotate the

constellation in steps of 90 deg => observe

that the symbols received are the same due

to Differential Decoding

7. Phase Shift Keying – QPSK in GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.85

► In GNU Radio companion app, open from File -> Open:

/home/analog/Desktop/ftc_2024/5_qpsk_loopback_gnuradio/qpsk_loopback_jupiter.grc

► To open GNU Radio run the following commands:

$ cd /home/analog/Desktop

$ sudo ./start-grc.sh

► Connect Rx and Tx using the SMA cable from the kit by making a loopback between RX1 and TX1.

7. Phase Shift Keying – QPSK in GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.86

8. Phase Shift Keying –
Receive a message in

GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.87

Transmitter

Receiver

Sends specific Messages
at regular time intervals

Appends CRC32
checksum

Appends access
key and length of
payload

Converts PDUs to steam
of data tagged with metadata

Blocks that extract the message
from the Rx stream of bits

8. Phase Shift Keying – Receive a message in GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.88

The Symbols are Noisier because the data
is sent in bursts (not continuously)

8. Phase Shift Keying – Receive a message in GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.89

► For this example, connect only one antenna to the RX1 of Jupiter

► In GNU Radio companion app, open from File -> Open:

/home/analog/Desktop/ftc_2024/6_console_message_point_to_point_gnuradio/receiver_jupiter/console_message_receiver_jupiter.grc

► To open GNU Radio run the following commands:

$ cd /home/analog/Desktop

$ sudo ./start-grc.sh

We will transmit to you

8. Phase Shift Keying – Receive a message in GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.90

9. Phase Shift Keying –
Receive a message
and store it in a file

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.91

Transmitter

Receiver

9. Phase Shift Keying – Receive a message and store it in a file

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.92

After you run the flowgraph for a few seconds, stop it and open the receive.txt file from:

/home/analog/Desktop/ftc_2024/7_qpsk_point_to_point_txtfile_gnuradio/receiver_jupiter

9. Phase Shift Keying – Receive a message and store it in a file

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.93

► In GNU Radio companion app, open from File -> Open:

/home/analog/Desktop/ftc_2024/7_qpsk_point_to_point_txtfile_gnuradio/receiver_jupiter/qpsk_receiver_txtfile_jupiter.grc

► To open GNU Radio run the following commands:

$ cd /home/analog/Desktop

$ sudo ./start-grc.sh

We will transmit to you

► For this example, connect only one antenna to the RX1 of Jupiter

9. Phase Shift Keying – Receive a message and store it in a file

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.94

10. Amplitude Shift Keying
– GNU Radio Example

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.95

Transmitter

Receiver

Generate four
symbols repeatedly

Repeat each symbol
100 times

Offset frequency with
a complex sinusoid

Decimate (keep only
1 in 100 samples)

Take only the
magnitude of the
RX signal

10. Amplitude Shift Keying – GNU Radio Example

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.96

Using this slider, you can offset the Tx signal
relative to TX LO frequency

TX symbols: 100 sps for each symbol
between (0, 1/3, 2/3, 1)

Observe on the RX constellation,
4 levels of amplitude

RX unprocessed signal

Only the magnitude of the RX signal
(on right -> decimated)

10. Amplitude Shift Keying – GNU Radio Example

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.97

► In GNU Radio companion app, open from File -> Open:

/home/analog/Desktop/ftc_2024/8_ask_loopback_gnuradio/ASK_loopback_jupiter.grc

► To open GNU Radio run the following commands:

$ cd /home/analog/Desktop

$ sudo ./start-grc.sh

► Connect Rx and Tx using the SMA cable from the kit by making a loopback between RX1 and TX1.

10. Amplitude Shift Keying – GNU Radio Example

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.98

► Conclusion:

ASK combined with PSK forms QAM:

+ ->

10. Amplitude Shift Keying – GNU Radio Example

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.103

11. QPSK without additional
digital processing – GNU Radio

► Transmitter:

Configure
SDR

Create
array of

bits

Interpolate with 16 sps and
Remap symbols: bit 0 -> -1
 bit 1 -> 1

Call tx() function
and transmit

Call rx() function
to receive data

► Receiver:

Adjust the
frequency offset

Select the right
samples and

decimate

Fine frequency
and phase

adjustment

Plot
data

Shift
Spectrum

Matched
Filter

Matched
Filter

MISSING

Optional

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.104

Transmitter

Receiver

11. QPSK without additional digital processing – GNU Radio

Offset spectrum to the right
to not overlap it with DC leakage

Shift the spectrum back to DC

Generate sequence
of bits

Map Bits onto
symbols

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.105

11. QPSK without additional digital processing – GNU Radio

No frequency offset because the example
works on loopback and the LO is the same for RX and TX
but has a phase offset between the two paths.

Try tweaking the frequency offset between TX and RX
and see how the data looks -> this happens when
we transmit and receive between two different devices.

The spectrum is inefficiently used
(spectrum of square wave)

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.106

► In GNU Radio companion app, open from File -> Open:

/home/analog/Desktop/ftc_2024/10_qpsk_raw_loopback_gnuradio/QPSK_raw_loopback_jupiter.grc

► To open GNU Radio run the following commands:

$ cd /home/analog/Desktop

$ sudo ./start-grc.sh

► Connect Rx and Tx using the SMA cable from the kit by making a loopback between RX1 and TX1.

11. QPSK without additional digital processing – GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.107

►Conclusions:

- The frequency offset an LO drift is required to be corrected at receiver

 - The phase offset of the LO at the receiver is required to be corrected

 - These are varying with distance and temperature in time => need some sort of feedback
loop to constantly adjust the frequency and phase

- The correct sample from the received signal needs to be extracted (not transitions)

 - Even if we do all these, if we rotate the constellation 180 deg, the symbols received
will be out of place

11. QPSK without additional digital processing – GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.113

12. QPSK - Constellation
Modulator in GNU Radio

► Transmitter:

Configure
SDR

Create
array of

bits

Interpolate with 16 sps and
Remap symbols: bit 0 -> -1
 bit 1 -> 1

Call tx() function
and transmit

Call rx() function
to receive data

► Receiver:

Adjust the
frequency offset

Select the right
samples and

decimate

Fine frequency
and phase

adjustment

Plot
data

Shift
Spectrum

MISSING

Matched
Filter

Matched
Filter

ADDED

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.114

Transmitter

Receiver

Const. Modulator block:
maps bytes into symbols
and applies RRC filter

RRC filter at RX

12. QPSK - Constellation Modulator in GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.115

The BW is optimized due to matched
Filters (one from Const. Modulator
block at TX and one at the RX.

The RX signal is not decimated
By selecting the right samples

12. QPSK - Constellation Modulator in GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.116

► In GNU Radio companion app, open from File -> Open:

/home/analog/Desktop/ftc_2024/12_constellation_modulator_loopback_gnuradio/constellation_modulator_loopback_jupiter.grc

► To open GNU Radio run the following commands:

$ cd /home/analog/Desktop

$ sudo ./start-grc.sh

► Connect Rx and Tx using the SMA cable from the kit by making a loopback between RX1 and TX1.

12. QPSK - Constellation Modulator in GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.117

►Conclusion:

- Using the Constellation Modulator block, the transmitted bits are mapped into IQ

symbols and a RRC filter is applied on the Transmitter path, thus the bandwidth used

is optimized

12. QPSK - Constellation Modulator in GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.118

13. QPSK – Frequency Locked
Loop in GNU Radio

► Transmitter:

Configure
SDR

Create
array of

bits

Interpolate with 16 sps and
Remap symbols: bit 0 -> -1
 bit 1 -> 1

Call tx() function
and transmit

Call rx() function
to receive data

► Receiver:

Adjust the
frequency offset

Select the right
samples and

decimate

Fine frequency
and phase

adjustment

Plot
data

Shift
Spectrum

MISSING

Matched
Filter

Matched
Filter

ADDED

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.119

► In GNU Radio companion app, open from File -> Open:

/home/analog/Desktop/ftc_2024/13_fll_loopback_gnuradio/FLL_loopback_jupiter.grc

► To open GNU Radio run the following commands:

$ cd /home/analog/Desktop

$ sudo ./start-grc.sh

► Connect Rx and Tx using the SMA cable from the kit by making a loopback between RX1 and TX1.

13. QPSK – Frequency Locked Loop in GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.120

Transmitter

ReceiverThis block dynamically adjusts
the frequency of the received spectrum

13. QPSK – Frequency Locked Loop in GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.121

Use this slider to tweak the frequency
offset between TX and RX.
Observe how the spectrum after FLL
block stays centered around DC.
A more precise frequency offset
Correction still needs to be applied

13. QPSK – Frequency Locked Loop in GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.122

14. QPSK – Symbol Sync
in GNU Radio

► Transmitter:

Configure
SDR

Create
array of

bits

Interpolate with 16 sps and
Remap symbols: bit 0 -> -1
 bit 1 -> 1

Call tx() function
and transmit

Call rx() function
to receive data

► Receiver:

Adjust the
frequency offset

Select the right
samples and

decimate

Fine frequency
and phase

adjustment

Plot
data

Shift
Spectrum

MISSING

Matched
Filter

Matched
Filter

ADDED

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.123

► In GNU Radio companion app, open from File -> Open:

/home/analog/Desktop/ftc_2024/14_symbol_sync_loopback_gnuradio/symbol_sync_loopback_jupiter.grc

► To open GNU Radio run the following commands:

$ cd /home/analog/Desktop

$ sudo ./start-grc.sh

► Connect Rx and Tx using the SMA cable from the kit by making a loopback between RX1 and TX1.

14. QPSK – Symbol Sync in GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.124

Transmitter

ReceiverSymbol Sync block: applies
RRC filter and selects the right
1 out of 16 symbols

14. QPSK – Symbol Sync in GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.125

Observe that now all the symbols have the same
amplitude on the constellation plot but the
imaginary and real parts of the data are still varying
due to a remaining frequency and phase offset.

14. QPSK – Symbol Sync in GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.126

Here are plotted the main dynamic parameter
of the symbol sync block. Observe that the
timing stays around 16 = sps setting and
the error stays around 0.

14. QPSK – Symbol Sync in GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.127

15. QPSK – Costas Loop
in GNU Radio

► Transmitter:

Configure
SDR

Create
array of

bits

Interpolate with 16 sps and
Remap symbols: bit 0 -> -1
 bit 1 -> 1

Call tx() function
and transmit

Call rx() function
to receive data

► Receiver:

Adjust the
frequency offset

Select the right
samples and

decimate

Fine frequency
and phase

adjustment

Plot
data

Shift
Spectrum

Matched
Filter

Matched
Filter

ADDED

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.128

► In GNU Radio companion app, open from File -> Open:

/home/analog/Desktop/ftc_2024/15_costas_loop_loopback_gnuradio/costas_loop_loopback_jupiter.grc

► To open GNU Radio run the following commands:

$ cd /home/analog/Desktop

$ sudo ./start-grc.sh

► Connect Rx and Tx using the SMA cable from the kit by making a loopback between RX1 and TX1.

15. QPSK – Costas Loop in GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.129

Transmitter

Receiver

Costas Loop block: makes fine tuning
to the remaining frequency and phase
error.

15. QPSK – Costas Loop in GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.130

Observe how the symbols are now separated
as we wanted and the transitions in the Eye
diagrams are less nosy.

15. QPSK – Costas Loop in GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.131

Here you can tweak the bandwidth of the Costas Loop and see how it influences the error signal and
the constellation plot. You can also add a phase shift in radians after Costas Loop.

Observe that the error signal is centered around 0 and the Phase Correction signal sits between 0 and 2*Pi.

15. QPSK – Costas Loop in GNU Radio

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.132

Other open-source software
platforms for SDR

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.133

SDR Angel

https://www.sdrangel.org/

Other open-source software platforms for SDR

https://www.sdrangel.org/

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.134

GQRX

https://www.gqrx.dk/

Other open-source software platforms for SDR

https://www.gqrx.dk/

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.135

► In SDR, a lot of the signal-processing tasks are moved in software, resulting in a faster development time.

► The software is easily portable between our SDRs which allows for a lower cost system for prototyping

(such as Pluto).

► There is a lot of open-source software and platforms that can accelerate the development of SDR systems.

► The same SDR hardware can be used in multiple applications that in the past needed separate hardware, resulting

in a much lower cost of the system (for prototyping) and development resources.

Conclusions

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.136

[1] Pluto - https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/adalm-pluto.html

[2] Jupiter - https://wiki.analog.com/resources/eval/user-guides/jupiter-sdr/hardware-overview

[3] Talise SOM - https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/adrv9009-zu11eg.html

[4] T. F. Collins, R. Getz, Di Pu, A. M. Wyglinski,- Software-Defined Radio for Engineers,2018, ISBN-13: 978-1-63081-457-1.\

[5] GNU Radio - https://www.gnuradio.org/

[6] M. Lichtman, "PySDR" - https://pysdr.org/

[7] T. F. Collins – https://www.gnuradio.org/grcon/grcon18/presentations/ADI_Transceivers_A_Deep_Dive/

[8] J. Gallachio - https://github.com/gallicchio/learnSDR

[9] SDRangel - https://www.sdrangel.org/

[10] K. Mueller and M. Muller, “Timing recovery in digital synchronous data receivers,” IEEE Trans. Commun.,

vol. C-24, no. 5, pp. 516–531, May 1976.

[11] J. Costas, “Synchronous Communications,” Proceedings of the IEEE, vol. 44, p. 1713-1718, 1956

[12] PyADI-IIO - https://github.com/analogdevicesinc/pyadi-iio/

[13] iio_attr documentation - https://wiki.analog.com/resources/tools-software/linux-software/libiio/iio_attr

[14] All the documentation from this workshop - https://analogdevicesinc.github.io/documentation/learning/index.html

References

https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/adalm-pluto.html
https://wiki.analog.com/resources/eval/user-guides/jupiter-sdr/hardware-overview
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/adrv9009-zu11eg.html
https://www.gnuradio.org/
https://pysdr.org/
https://www.gnuradio.org/grcon/grcon18/presentations/ADI_Transceivers_A_Deep_Dive/
https://github.com/gallicchio/learnSDR
https://www.sdrangel.org/

Analog Devices Confidential Information. ©2024 Analog Devices, Inc. All rights reserved.137

[15] Kuiper 2 source code: https://github.com/analogdevicesinc/adi-kuiper-gen/tree/staging/kuiper2.0

[16] Kuiper 2 built images: https://github.com/analogdevicesinc/adi-kuiper-gen/actions/workflows/kuiper2_0-build.yml

References

Thank You!

Analog Devices Confidential Information—Not for External Distribution. ©2024 Analog Devices, Inc. All Rights Reserved. FTC | Orlando, FL | November 4-8, 2024138

Please Remember to Rate this
Session in the Mobile App!

	Title Slide
	Slide 1
	Slide 2: Agenda

	Introduction
	Slide 3
	Slide 4: Software hands-on training kit
	Slide 5: Any signal chain to Any application on Any platform
	Slide 6: SSG/CSE (Customer Solutions Enablement)
	Slide 7: Typical Customer Design Flow
	Slide 8: Software in the Design-in Journey
	Slide 9: Evaluation, Test and Analysis
	Slide 10: Algorithmic Development, Modeling, Prototyping
	Slide 11: Building Blocks for development and new revenue streams
	Slide 12: Common Architecture Makes It Easy to Transition Between Platforms
	Slide 13: What is Kuiper

	SDR Hardware
	Slide 14
	Slide 15: What is SDR (Software Defined Radio)?
	Slide 16
	Slide 17: Hardware
	Slide 18: AD-JUPITER-EBZ
	Slide 19: SW and HDL Architecture
	Slide 20: Setup
	Slide 21

	1. IIO Oscilloscope
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

	2. Transmit and receive a complex sinusoid with GNU Radio
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

	3. Transmit and receive a complex sinusoid with Python
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

	4. How to explore and tweak device attributes
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 52
	Slide 54
	Slide 56
	Slide 57

	5. Doppler Radar with GNU Radio
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

	6. Phase Shift Keying - BPSK in Python
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

	7. Phase Shift Keying - QPSK in GNU Radio
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85

	8. Phase Shift Keying - Receive a message in GNU Radio
	Slide 86
	Slide 87
	Slide 88
	Slide 89

	9. Phase Shift Keying - Receive a message and store it in a file
	Slide 90
	Slide 91
	Slide 92
	Slide 93

	10. Amplitude Shift Keying - GNU Radio Example
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98

	11. QPSK without additional digital processing - GNU Radio
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107

	12. QPSK - Constellation Modulator in GNU Radio
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117

	13. QPSK - Frequency Locked Loop in GNU Radio
	Slide 118
	Slide 119
	Slide 120
	Slide 121

	14. QPSK - Symbol Sync in GNU Radio
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126

	15. QPSK - Costas Loop in GNU Radio
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131

	Other open-source software platforms for SDR
	Slide 132
	Slide 133
	Slide 134

	Conclusions
	Slide 135

	References
	Slide 136
	Slide 137

	Closing Slide
	Slide 138

